TS2068 Technical Manual

This is the second edition of the manual published by Time Designs Magazine (now defunct). It is based on the original blue manual released by Timex Computer Corp. shortly before it folded. Aside from a page renumbering and some sections that were added in the second edition, there is not a lot of difference between the two.

This doc was captured using Adobe Acrobat 3.0, the only software I could find that did a half-decent job. There are still numerous errors where Acrobat got confused, but I'm too lazy to fix them.

Alvin 05/10/98 aralbrec@concentric. net

TIMEX SINCLAIR 2068 PERSONAL COLOR COMPUTER

TECHNICAL REFERENCE MANUAL

Prepared by

V. C. Corcoran and M. H. Branigin

TIMEX COMPUTER CORPORATION Waterbury CT 06720

© May 1984

Second Edition Printing Published Exclusively by: TIME DESIGNS MAGAZINE CO. COLTON, OREGON 97017

© JANUARY 1986

PREFACE

This manual is dedicated to the many individuals associated with the Timex Computer Corporation in the development and production of the TS2068. Our special thanks to Nan Parsons who prepared the TS2068 Schematic and other drawings used in this manual.

While every effort has been made to make this document the technical complete and accurate, use of information contained herein is at user's sole risk. The Timex Corp. or its affiliates, and Time Designs Magazine Company assume no responsibility or liability for the safety or performance of any product manufactured relying on the technical contained herein, or liability, loss, any expense sustained by reason of any claim that such products infringe any patent or other industrial property right.

The Second Edition of this Technical Manual has been reedited by Tim Woods. Special thanks to Bob Orrfelt and Dave Clifford for technical assistance.

If you would like to receive information on a magazine and other publications for the Timex Sinclair 2068, direct your inquiry to: Time Designs Magazine Company, 29722 Hult Rd., Colton, OR 97017.

Tlmex SInclair 2068 Technical Manual (2nd Edition), Copyright 1986 by the Tlme Designs Magazine Company. Reproduction of this document in whole or in part by any means without expressed written permission from Tlme Designs, Is prohibited by law.

This manual was printed by Toad'l Litho Printing and Composition, Oregon City, OR 97045.

TARLE OF CONTENTS

1.0	INTRODUCTION	N 1
1.1	TS 2068 Ove	erview 1
	1. 1. 1 1. 1. 2 1. 1. 3	Hardware Overview System Software Overview Cartridge Software Overview
2. 0	HARDWARE GU	JIDE 7
2.1	Major Hardw	ware Functions 7
	2. 1. 1 2. 1. 2 2. 1. 3 2. 1. 4 2. 1. 5 2. 1. 6 2. 1. 7 2. 1. 8 2. 1. 9 2. 1. 10 2. 1. 11 2. 1. 12 2. 1. 13	AC Adapter Voltage Regulation Z80A CPU R0M 32K RAM Programmable Sound Generator Joystick Port Control Logic Keyboard 16K Video Display RAM Video Generation Cassette I/O Port Map
2. 2	Schematic	(see inside back cover and Appendix D)
2.3	Unit Absolu	ite Ratings 53
2.4	Interfaces	and Connectors 53
	2. 4. 1 2. 4. 2 2. 4. 3 2. 4. 4 2. 4. 5 2. 4. 6 2. 4. 7 2. 4. 8	System Bus Connector - Pl Cartridge Connector - J4 Cassette I/O Joystick Composite Monitor Output RF Output Keyboard Interface Connector - J9 AC Adapter Power Plug
3. 0	SYSTEM SOFT	TWARE GUIDE 65

3.1 Identifier 65

TABLE OF CONTENTS

(continued)

3. 2	ROM Organi	zation and S	ervices 65
	3. 2. 1	Home ROM	
		3. 2. 1. 1	Fixed Entry Points
		3. 2. 1. 2	BASIC AROS Support
		3. 2. 1. 3	General
	3. 2. 2	Extension	ROM
		3. 2. 2. 1	Fixed Entry Points
		3. 2. 2. 2	General Video Mode Change Service Extension ROM Interface Routine
		3. 2. 2. 3	Video Mode Change Service
		3. 2. 2. 4	Extension ROM Interface Routine
3. 3	RAM Organi	ization and S	Services 72
	3. 3. 1	System Va	
	3. 3. 2	System Co	nfiguration Table
	3. 3. 3	Machine S	
	3. 3. 4	OS RAM Ro	utines
		3. 3. 4. 1	RAM Interruption Handler
		3. 3. 4. 2	
		3. 3. 4. 3	Function Dispatcher
4. 0	SYSTEM I/	O GUIDE 91	
4. 1	I/O Chann	els 91	
	4. 1. 1	Keyboard	
	4. 1. 2	Vi deo Scr	
	4. 1. 3	2040 Dot	Matrix Printer
4. 2	Cassette '	Tape 102	
4. 3	Joysti cks		
4. 4		enerated Soun	
4. 5	Programmab)	le Sound Chip	(SOUND) 105
5. 0	ADVANCED C	CONCEPTS 106	5
5. 1	Cartri dge	Software/Hard	ware 106
5. 2	Advanced V	ideo Modes	117

Other

5. 3

125

TABLE OF CONTENTS

(continued)

126

KNOWN "BUGS" AND CORRECTIONS

6.0

6. 2 Mac	chi n	and Machi ie Code A AROS 12	ROS 1	e AROS 126	126		
6.4 Vi 6.5	deo	Mode Cha	inge Se		127		
	General	RAM Routines 1					
APPENDI CES	S						
Appendix Appendix Appendix	В -	System V Applicat C-1 C-Z	ariable ion De 64-Colu 80-Colu	es Defin velopmen unn Mode unn Mode	nition l nt Libra e e	File	150 158
		c-3 c-4 c-5		creen M			
Appendi x	D	- 288					
		D- 1 D- 2 D- 3	TS2068	Parts :	sembly List tic Dia _l		ļ
Appendix Appendix							295 296

LIST OF FIGURES

FIGURE NO.	<u>TITLE</u>
1. 1-1	TS 2068 Block Diagram
1. 1-2	Memory Configuration
1. 1- 3	RAM Mapping
1. 1-4	System Initialization Flowchart
2. 1. 3-1	CPU Tining
2. 1. 3- 2	Op Code Fetch Timing
2. 1. 3- 3	Memory Read/Write Timing
2. 1. 3- 4	I/O Read/Write Timing
2. 1. 3- 5	Interrupt Request/Ack. Cycle
2. 1. 4-1	Rework for EPROM s
2. 1. 6-1	PSG Register Block Diagram
2. 1. 6-2	Tone Period Registers
2. 1. 6- 3	Noise Period Register
2. 1. 6- 4	Mixer Control-I/O Enable Reg.
2. 1. 6- 5	D/A Converter Signal Generation
2. 1. 6-6	Amplitude Control Registers
2. 1. 6-7	Variable Amplitude Control
2. 1. 6-8	Envelope Period Registers
2. 1. 6- 9	Envelope Shape/Cycle Control Reg.
2. 1. 6-10	Envelope Generator Output
2. 1. 6-11	Envelope Generator Output Detail
2. 1. 7-1 2. 1. 8-1	Joystick Port Operation Bank Selection Logic
2. 1. 8-1	Video RAM Address Generation
2. 1. 9-2	Keyboard Schematic
2. 1. 10-1	Video RAM Data Organization
2. 1. 11-1	Composite Video Signal
2. 4. 1- 1	Pl Mating Connector Mechanical Requirements
2. 4. 1- 2	Pl Signal Layout
2. 4. 1- 3	RGB Monitor Connection Schematic
2. 4. 2-1	J4 Mating Connector Mechanical Requirements
2. 4. 2- 2	J4 Signal Layout
2. 4. 4-1	Joystick Connector
2. 4. 8-1	AC Adapter Plug
3. 2. 2-1	Ext. ROM Interruption Fielder
3. 2. 2-2	Ext. ROM Interface Routine
4. 1. 1-1	Keyboard Mode Control
4. 1. 1- 2	Keyboard Support Routines
	Flowcharts
4. 1. 2- 1	Standard Character Table Locations
4. 1. 2-2	Screen Row/Column Designations
4. 2-1	Tape Header Formats
4. 3-1	Joystick Data Format

LIST OF FIGURES (continued)

FIGURE NO.	TITLE
5. 1-1	EPROM Cartridge Board Schemtic
5. 1-2	Ctdg. Bd. Component Side Artwork
5. 1-3	Ctdg. Bd. Solder Side Artwork
5. 1-4	EPRÖM Cartridge Bd. Solder Mask
6. 5- l	GET STATUS Corrections
6. 5-2	PUT-WORD Corrections
6. 5- 3	BANK ENABLE and RESTORE_STATUS
	Corrections

LIST OF TABLES

TABLE NO.	TITLE
2-1	Z80A Control Signals
2. 1. 6- 1 2. 1. 6- 2	PSG I/O Enable Truth Table PSG I/O Port Truth Table
2. 1. 8- 1	SCLD I/O Pin Function Definitions
2. 1. 13-1	I/O Port Map
2. 4. 1-1	Pl Signal Definitions
2. 4. 1- 2	Pl Signal Electrical Characteristics
2. 4. 2-1	J4 Signal Definitions
2. 4. 2- 2	J4 Signal Electrical Characteristics
2. 4. 4-1	Joystick Connector Signal Assignment
3. 2. 2-1	Inputs to Video Mode Change Service
3. 3. 4-1	OS RAM Service Routines
3. 3. 4- 2	Function Dispatcher Services

1.0 INTRODUCTION

This manual provides detailed technical information on the Timex Sinclair 2068 Personal Color Computer. In conjunction with the TS2068 User Manual, it is intended to assist the reader in understanding the architecture, hardware and software features, programming techniques and I/O techniques pertaining to the TS2068.

1.1 TS2068 Overview

1.1.1 Hardware Overview

Figure 1.1-1 is a block diagram of the TS2068 showing the major functional components and their logical connections. These components are:

Control Logic · SCLD (Standard Cell Logic Device)

CPU - Z80A Microprocessor
RA!! - 48K Random Access Memory
ROM - 24K System Read-Only Memory
(16K plus 8K Extension)

System Bus Connector Cartridge Connector Sound Generator/Speaker Video Circuits Cassette READ/WRITE Joystick Connectors

The TS2068 Cartridge Connector provides for the plug-in of cartridges containing programmed ROMs with up to 64K of addressable memory. The full 64K is not normally utilized (e.g., due to need for access to RAM for the machine stack). See Section 5.1 for details.

Figure 1.1-2 shows the standard TS2068 memory configuration comprised of the Home Bank, the ROM Extension Bank and the Dock (Cartridge) Bank. This memory is selectable as eight 8K 'chunks' with the Home Bank being enabled by default, i.e., any chunk not selected in the Extension or Dock Bank is automatically enabled in the Home Bank.

Memory selection and I/O are controlled via the I/O ports. These topics are covered in detail in later sections.

FIGURE 1.1-1
TS 2068 SYSTEM BLOCK DIAGRAM

FIGURE 1.i-2
TS 2068 STANDARD MEMORY CONFIGURATION

1.1.2 System Software Overview

The TS2068 System Software resides in the Hone ROM, the Extension ROM, and dedicated RAM. It supports the following functions: $\frac{1}{2} \frac{1}{2} \frac{1}$

- System Initialization
- BASIC Interpreter (including BASIC cartridge support)
- BASIC I/O for Standard Peripherals
 - o keyboard
 - o video screen
 - o 2040 32-col. dot matrix printer
 - o cassette tape
 - o joysticks
 - o software generated sound (BEEP)
 - o programmable sound chip (SOUND)
- Video Mode Change Service
- Interruption Servicing (Z80 Int. Mode 1)
- Bank Switching/Data Transfer Services
- Function Dispatcher (provides access to selected system routines via a Service Code input)

In addition, portions of the Home Bank RAM are used for the machine stack, the BASIC system variables, the Printer Buffer and the Display Files. Figure 1.1-3 shows the standard mapping of the Home Bank RAM and the mapping necessary when the second display file is to be used with the BASIC interpreter still functional. The Video Mode Change Service routine makes these memory modifications. Note that there is no direct support of the second display file via BASIC or in the system ROM I/O routines.

Figure 1.1-4 is a Flowchart of the System Initialization process.

FIGURE 1.1-3

STANDARD MAPPING OF

HOME BANK RAM

FIGURE 1.1-4 SYSTEM INITIALIZATION

1.1.3 Cartridge Software Overview

The TS2068 supports two basic types of Cartridge or ROM Oriented designated as Software LROS (Language ROM Oriented Software) and AROS (Application ROM Oriented Software) which plug into the cartridge connector. They are identified via overhead bytes at Location 0 for an LROS or 32768 (8000H) for an AROS. The fundamental difference is that an LROS contains 280 machine code in memory chunk 0 and is in total control of the TS2068 **RESTART** implementation hardware including the Interruption Mode setting and handling, while an AROS is dependent on the System ROM or an LROS for these functions if needed. An AROS written in BASIC, which may also include machine code accessed via the USR function, is supported from the System ROM BASIC Interpreter and is mapped beginning in memory chunk 4. An AROS may also be written entirely in Z80 machine code. An AROS written in any other high-level language would require an LROS supporting that language and would have to be integrated with the LROS in a single cartridge.

See Sections 3.2.1.2, BASIC AROS Support and 5.1, Cartridge Software/Hardware, for additional details.

2.0 HARDWARE GUIDE

2.1 Description of Major Hardware Functions

Figure 1.1-1 shows a simplified block diagram of the TS2068. The following functional units are described in the following sections:

SECTION	FUNCTIONAL UNIT
2. 1. 1	AC Adapter
2. 1. 2	Voltage Regulation
2. 1. 3	Z-80A CPU
2. 1. 3. 1	Address Bus
2. 1. 3. 2	Data Bus
2. 1. 3. 3	Control Signals
2. 1. 3. 4	OP Code Fetch
2. 1. 3. S	Memory READ/WRITE
2. 1. 3. 6	I/O READ/WRITE
2. 1. 3. 7	Maskable Interruption
2. 1. 3. 8	Non-Maskable Interruption (NM)
2. 1. 4	ROM
2. 1. 5	32K RAM
2. 1. 6	Sound Generator
2. 1. 7	Joystick Port
2. 1. 8	Control Logic
2. 1. 8. 1	Bank Selection Logic
2. 1. 8. 2	Z80 Clock Generator
2. 1. 8. 3	Display File Access
2. 1. 8. 4	Interruption Generation
2. 1. 9	Keyboard
2. 1. 10	16K Video Display RAM
2. 1. 11	Video Generation
2. 1. 11. 1	Composite Video
2. 1. 11. 2	RF Modulator
2. 1. 12	Cassette I/O
2. 1. 13	Port Map

2.1.1 AC Adapter

The AC Adapter transforms 117V AC (Nominal) to filtered DC via a step down transformer, full-wave bridge rectifier, and filter capacitor to supply from 14 to 25 volts at 1 amp over the AC voltage variation range of 105 to 130 V AC. Transformer isolation exceeds 1500 volts.

2.1.2 Voltage Regulation

Unregulated DC from the AC Adapter is supplied for regulation through a bi-filar torroidal inductor which reduces conducted line emanation for FCC compliance and through the power-ON/OFF switch located on the left side of the TS2068. This switch voltage is supplied to the System Bus Connector (see Section 2.4) and for regulation to the +12 V regulator and the +5 V regulator. Characteristics are as follows:

SUPPLY	VOLTAGE RANGE	CURRENT	RANGE
5V	4. 75 - 5. 25V	200na -	
12v	11. 5 - 12. 5V	20na	

The 12V regulator is a 78L12 series, regulator while the 5V regulator is a switching supply utilizing the 78S40 circuit.

2. 1. 3 Z-80A CPU

The Z-80A CPU of the TS2068 operates at a clock frequency of 3.53 MHz. Primary features of this CPU are:

158 instructions
Dual register set
Two index registers
On-chip refresh logic

The Z-80 CPU executes instructions by proceeding through a sequence of operations that include:

- a) instruction Op code fetching
- b) READ or WRITE memory
- c) READ or WRITE I/O
- d) Acknowledge an interruption

The basic clock period is referred to as a T time or state and three or more T states make up a machine cycle. In the TS2068, each T-time is approximately 283 nanoseconds (2.83 X 10-7 seconds). Figure 2.1.3-1 illustrates the basic timing.

FIGURE 2.1.3-1

BASIC CPU TIMING EXAMPLE

2.1.3.1 Address **Bus**

Output from the Z-80 are 16-bits of address information, A0 \cdot A15, which are high-active tri-state signals and address for memory data and I/0 device exchanges.

2. 1. 3. 2 Data Bus

These input/output signals from the Z-80, D0 - D7, constitute an 8-bit bi-directional, high-active, tri-state data bus used for data exchanges with memory and I/0 devices.

2. 1. 3. 3 Control Bus

Associated with the Z-80 are 13 control lines which are provided by or used by the Z-80 to control system operation. These signals are detailed in Table 2-1.

2.1.3.4 Op Code Fetch

The timing during an M cycle (OP Code Fetch) is shown in Figure 2.1.3-2. At the beginning of the M cycle the PC (Program Counter) is placed onto the address bus, then one-half clock time later the /MEQ signal goes active indicating that the memory address is stable. The RD signal is activated to indicate that memory read data should be gated onto the data At the rising clock edge during the T3 state, the CPU samples the data on the data bus and deactivates the /RD and /MEQ signals. During the T3 and T4 states, the CPU decodes and executes the fetched instruction and the CPU places on the lower 7 bits of the address bus a memory refresh address and activates the /RESH signal indicating a refresh read is to begin when /MEQ is activated.

2.1.3.5 Memory READ/WRITE

Memory read or write cycles other than Op Code Fetches are 3 clock periods long with the MREQ and RD signals used as in the fetch cycle. During a write cycle the WR signal is activated when the write data is stable on the data bus. The address and data bus contents remain stable for one-half T state after the WR signal goes active. Figure 2.1.3-3 illustrates.

FIGURE 2.1.3-2

INSTRUCTION OP CODE FETCH

FIGURE 2.1.3-3

MEMORY READ OR WRITE CYCLES

2. 1. 3. 6 I/O READ/WRITE

During I/O operations TORQ and RD or WR are activated on the leading edge of the T2 clock and a single Wait state is automatically inserted as illustrated in Figure 2.1.3-4. The RD and WR signals are used to enable data from the addressed port onto the data bus and to, on the rising edge of WR, clock data to the I/O port, respectively. Note that external I/O may stretch the activation period of the WAIT line to extend the I/O cycles.

FIGURE 2.1.3-4

INPUT OR OUTPUT CYCLES

Insertedby Z80 CPU

2.1.3.7 Maskable Interruption

When enabled by software, when BUSRO is not active and when INT is active at the rising edge of the last clock of any instruction, a maskable interruption occurs during the subsequent M cycle, as illustrated in Figure 2.1.3-5.

FIGURE 2.1.3-5

INTERRUPT REQUEST / ACKNOWLEDGE CYCLE

In Interruption Mode 0, the interrupting I/O device places any instruction on the data bus during the IORQ activation and the CPU executes that instruction. The RESTART instruction is commonly used for this purpose. RESET will automatically set Interruption Mode 0.

In Interruption Mode 1, the CPU executes a RESTART to Location 0038H. This is the mode normally used by the TS 2068 software.

In Interruption Mode 2, the CPU concatenates the 8-bit argument, which must be a E-byte boundary address, with the 8-bit I Register contents to form a 16-bit pointer to a memory table entry containing the 16-bit service routine address the first byte in the table being the low order portion of the address. Once the interrupting device supplies the lower portion of the pointer (for concatenation), the CPU automatically pushes the PC onto the stack, obtains the starting address from the table, and does a jump to that address. 19 clock periods are required to complete this sequence.

2.1.3.8 Non-Maskable Interruption (NM)

A pulse on the NMT input to the Z80 sets the internal latch which is tested by the CPU at the end of each instruction. The NMI has priority over the maskable interruption and its reponse is identical to the maskable interruption (Mode 1) except that the call location is 0066H instead of 0038H.

- NOTES: 1. The NMI is not used by the TS 2068.
 - 2. Comments in the ROM listing claiming to "mask the NMI" via the DI instruction are incorrect. The DI instruction masks only the maskable interruption.

TABLE 2-1

Z-80 CONTROL SIGNALS

ACRONYM

DEFINITION

SYSTEM CONTROL

MT

Machine Cycle 1 - Output, active low. This signal indicates that the current machine cycle is-the OP code fetch cycle. During execution of instructions having a 2-byte OP code, this signal is generated as each OP code byte is fetched. MI is also used with IORQ to indicate an interrupt acknowledge cycle.

MREQ

Memory Request - Tri-state output, active low. This signal indicates that the Address Bus holds a valid address for a memory read or write operation.

IORO

I/O Request - Tri-state output, active low. This signal indicates that the lower half of the Address Bus holds a valid I/O address for an I/O read or write operation. This signal is also used with $\overline{\rm Ml}$ in connection with acknowledging an interruption, indicating that an interrupt response vector can be placed on the data bus. I/O operations never occur during $\overline{\rm Ml}$ time.

RD

Memory Read - Tri-state output, active low. This signal indicates that the CPU wants to read data from memory or an I/O device. The addressed memory or device should use this signal to gate the requested data onto the CPU data bus.

WR

Memory Write - Tri-state output, active low. This signal indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device.

RI - SH

Refresh - output, active low. This signal indicates that the lower 7 bits of the Address Bus contain a refresh address for dynamic memories and the current. 7 signal should be used to do a refresh read to all dynamic memories. A7 is a logic zero and the upper 8 bits of the Address Bus contain the contents of the I Register.

TABLE 2-1

Z80 CONTROL SIGNALS (continued)

ACRONYM

' DEFINITION

CPU CONTROL

HALT

Halt State · Output, active low. This signal indicates that the CPU has executed a HALT instruction. CPU operations are suspended until a Non-Maskable or a Maskable Interruption (with the mask enabled) occurs. While halted, the CPU executes NOP's to maintain memory refresh.

WAIT

Whit - Input, active low. This signal indicates to the CPU that the addressed memory or I/O device is not ready for a data transfer. The CPU will continue to enter wait states as long as this signal is active. This allows for synchronization of the CPU to external devices of varying speeds.

INT

Interrupt Request - Input, active low. This signal is generated by external devices and is honored at the end of the current instruction if the interrupt is not masked by the software and if the BUSRQ signal is not active. When the CPU accepts the interruption, an acknowledge signal is sent out at the beginning of the next instruction cycle (TORQ) at M time). There are three interruption modes selectable by the software.

NMI

Non-Maskable Interruption · Input, negative edge triggered. This signal has a higher priority than INT and is always recognized at the end of the current instruction (cannot be masked). The CPU is forced to restart to location 0066H with the program counter saved in the external stack. NOTE: The NM is not used in the TS2068 ROM software design.

TABLE 2-1

Z80 CONTROL SIGNALS (continued)

ACRONYM

DEFINITION

RESET

Reset - Input, active low. This signal forces the program counter to zero and initializes the CPU. Address and data buses go to their high impedance state and control output signals to their inactive state. No refresh occurs. Initialization includes: Disable the interrupt enable flip-flop and set Register I, Register R and the Interrupt Mode all to Zero.

CPU BUS CONTROL

BUSRO

Bus Request - Input, active low. This signal is used to request the CPU address bus, data bus and tri-state output control signals to qo to a high impedance state permitting other devices to control these buses. The CPU sets these buses to a high impedance state at the termination of the current Machine cycle.

BUSAK

Bus Acknowledge - Output, active low. This signal is used to indicate to the requesting device that the CPU has set its address, data and control bus signals to a high impedance state in response to BUSRQ.

Figure 2.1.4-1

REWORK TO REPLACE ROMs with EPROMs 45 V ŘĎ U20 U16 26 22 FYP SYS MREO 22 ROM ROM 20 20 ADD XXX CUT

2.1.4 ROM

The system includes both a 16K byte ROM and an 8K byte ROM napped into the address space as shown below.

Section 2.1.8.1 describes the selection of the Home Bank and Expansion Bank via the control logic.

The devices involved are a 23128 and a 2364 for the 16K byte (128K-bit) and the 8K byte (64K-bit) ROMs respectively. Direct replacement of these devices with 27128 and 2764 EPROMs is not possible since pins 1 and 27 must be mintained in the high state for those devices (see schematic in Section 2.2). To replace U16 and U20 with 27128 and 2764 EPROMs requires the rework shown in Figure 2.1.4-1.

- (1) Cut input to pin 27 on each chip.
- (2) Wire +5V to pins 1 and 27 on each chip to pull high.

If U20 is to be a 27128, then replace the RD input to pin 26 with address Al3 from pin 26 on U16.

2.1.5 32K RAM (Address 8000-FFFFH)

The upper 32K of RAM is composed of four 200ns 4416's (16K x 4 dynamic RAMs).

2.1.6 Sound Generator

The Programmble Sound Generator (GI 8912) is accessed via Ports OF5H (Address) and OF6H (Data). The basic registers in the PSG which produce the programmed sounds include:

Tone Generators: Produce the basic square wave tone frequencies for each channel (A, B, C).

Noise Generator: Produces a frequency modulated pseudo-random pulse width square wave output.

Mixers: Combine the outputs of the Tone Generators and the Noise Generator. One for each channel (A, B, C).

Amplitude Control: Provides the D/A Converters with either a fixed or variable amplitude pattern. The fixed amplitude is under direct CPU control; the variable amplitude is accomplished by using the output of the Envelope Generator.

Envelope Generator: Produces an envelope pattern which can be used to amplitude modulate the output of each Mixer.

D/A Converters: The three D/A Converters each produce up to a 16-level output signal as determined by the Amplitude Control.

An additional register is shown in the PSG Block Diagram (Figure 2.1.6-1) which has nothing directly to do with the production of sound -- this is the I/O Port (A). Data to/from the CPU may be read/written to/from the 8-bit I/O Port without affecting any other function of the PSG. The TS 2068 uses the I/O Port to access the joysticks.

2.1.6.1 Tone Generator Control (Registers RO-R5)

The frequency of each square wave generated by the three Tone Generators (one each for Channels A, B, and C) is obtained in the PSG by first counting down the input clock by 16, then by further counting down the result by the programed 12-bit Tone Period value. Each 12-bit value is obtained in the PSG by combining the contents of the relative Coarse and Fine Tune registers, as illustrated by Figure 2.1.6-2.

Note that the 12-bit value programed in the combined Coarse and Fine Tune registers is a period value -- the higher the value in the registers, the lower the resultant tone frequency.

Note also that due to the design technique used in the Tone Period countdown, the lowest period value is 00000000001 (divide by 1) and the highest period value is 11111111111 (divide by 4095).

FIGURE 2.1.6-l **PSG** REGISTER BLOCK DIAGRAM

R	EGIST	ER		1			ВІ	T			
DEC	HEX	OCT		В7	В6	В5	B4	В3	В2	B1	ВО
R0	R0	RO	Channel A			8 B	it Fine	e Tune			- 1
R1	R1	Rl	Tone Period	11111	//////	//////	//////		it Coa	rse	Tune
R2	R2	R2	Channel B			8 B	it Fine	e Tune			
R3	R3	R3	Tone Period	11111	//////	//////	//////	4 B	it Coa	rse	Tune
R4	R4	R4	Channel C	8 Bit Fine Tune							
R5	R5	R5	Tone Period	11111	//////	//////	//////		it Coa	rse	Tune
R6	R6	R6	Noise Period	/////	//////	//////	5 Bi	t Peri		trol	
				IN/	OUT		NOISE		T	ONE	
R7	R7	R7	Enable	IOB	IOA	С	В	A	С	В	A
R8	R8	R10	Ch.A Amplitude	/////	777777	//////	M	L3	L2	Ll	∟0
R9	R9	R11	Ch.B Amplitude	V //	//////	7//////	// M	L3	L2	Ll	L 0
R10	RA	Rl2	Ch.C Amplitud	le I,	//////	//////	/////	М	L3 L	2	L1 LO
Rll	RB	Rl3	Envelope			8	Bit Fi	ne Tun	e E		
R12	RC	R14	Period	8 Bit Coarse				se Tu	ne E		
			Envelope	77777	777777	777777	IIIIII				
R13	RD	R15	Shape/Cycle	/////	//////	//////	//////	CONT.	ATT.	ALT.	HOLD
			I/O Port A								
R14	RE	R16	Data Store	<u>!</u>		8 Bit	Paral.	lel I/	O on P	ort	A

FIGURE 2.1.6-2
12-BIT TONE PERIOD (TP) TO TONE GENERATOR

COARSE TUNE

REGISTER	CHAN	NEL			REG	ISTER				
Rl R3 R5	A B C]	RO R2 R4				
B7 B6 B	5 B4 B3 B2 1	B1 B0		B7	В6	B5 B4	B3 B2	B1 B	0	
TE	oll TPlO TP) TP8	TP7	TP6	TP!	5 TP4	TP3	TP2	TPl	TPO

FINE TUNE

2.1.6.1 (continued)

The equations describing the relationship between the desired output tone frequency and the input clock frequency and Tone Period value are:

(a)
$$fT = \frac{fCLOCK}{16TP}$$
 (b) $TP = 256CT + FT$
10 10

Where: fT = Desired tone frequency

fCLOCK = Input clock frequency

TP = Decimal equivalent of the Tone Period 10 bits TPll to TPO

CT = Decimal equivalent of the Coarse Tune 10 register bits B3 to B0 (TPll to TP8)

FT = Decimal equivalent of the Fine Tune 10 register bits B7 to B0 (TP7 to TP0)

From the above equations, it can be seen that the tone frequency can range from a low of:

to a high of:

$$fCLOCK/16$$
 (wherein $TP = 1$).

The TS 2068 uses a 1.76475 MHZ input clock, so it can produce a range of 26.9 Hz to 110 kHz.

2. 1. 6. 1 (continued)

To calculate the values for the contents of the Tone Period Coarse and Fine Tune registers, given the input clock and the desired output tone frequencies, we simply rearrange the above equations, yielding:

(a)
$$TP_{10} = \frac{fCLOCK}{16 fT}$$

(b)
$$CT + FT = TP$$

 $10 \frac{10}{256} \frac{10}{256}$

Example 1:
$$fT = 1 \text{ kHZ}$$
 $fCLOCK = 1.76475 \text{ MHz}$

$$TP = 1.76475 \times 10$$

$$10 \quad 3$$

$$16(1 \times 10) = 110.3$$

Substituting this result into equation (b):

resulting in:

$$CT = 0 = 0000 (B3-B0)$$
 $10 = 2$
 $FT = 110 = 01101110 (B7-B0)$
 $10 = 2$

Example 2:
$$fT = 100 \text{ Hz}$$
 $fCLOCK = 1.76475 \text{ MHz}$

$$\begin{array}{rcl} & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ &$$

Substituting this result into equation (b):

resulting in:

$$CT = 4 = 0100 (B3-B0)$$
 $10 = 2$
 $FT = 79 = 01001111 (B7-B0)$
 $10 = 2$

2.1.6.2 Noise Generator Control (Register R6)

The frequency of the noise source is obtained in the PSG by first counting down the input clock by 16, then by further counting down the result by the programmed 5-bit Noise Period value. This 5-bit value consists of the lower 5 bits (B4-B0) of Register R6 as illustrated by Figure 2.1.6-3.

FIGURE 2.1.6-3
NOISE PERIOD REGISTER R6

B/	B6	B5	B4	В3	B2	B1	BO
МОT	USEI	`	Бт	דות יחידכ	OT CE	DEDI	OD (ND)
NOI	OPFI)		BIT N NOIS			` ,

Note that the 5-bit value in R6 is a <u>period</u> value -- the higher the value in the register, the lower the resultant noise frequency. Note also that, as with the Tone Period, the <u>lowest</u> period value is 00001 (divide by 1); the <u>highest</u> period value is 11111 (divide by 31).

The noise frequency equation is: $fN = \frac{fCLOCK}{16 NP}$

Where:

fN = Desired noise frequency
fCLOCK = Input clock frequency
NP = Decimal equivalent of the
Noise Period register bits
B4-B0.

From the above equation it can be seen that the noise frequency can range from a low of fCLOCK/496 (wherein NP =31)

to a high of fCLOCK/16 (wherein NP = 1). Using a 1.76475 MHz

clock, for example, would produce a range of noise frequencies from 3.6 kHz to 110.3 kHz.

To calculate the value for the contents of the Noise Period register, given the input clock and the desired output noise frequencies, we simply rearrange the above equation, yielding:

 $\begin{array}{rcl}
NP & = & fCLOCK/16fN \\
10 & & & \\
\end{array}$

2.1.6.3 Mixer Control I/O Enable (Register R7)

Register 7 is a multi-function Enable register which controls the three Noise/Tone Mixers and the two general purpose I/O ports.

The Mixers, as previously described, combine the noise and tone frequencies for each of the three channels. The determination of combining neither/either/both noise and tone frequencies on each channel is made by the state of bits B5 thru B0 of R7.

The direction (input or output) of the two general purpose I/O ports (IOA and IOB) is determined by the state of bits B7 and B6 of R7. Note that in the TS 2068 there is no second I/O Port B.

These functions are illustrated by Figure 2.1.6-4 and Tables 2.1.6-1 and 2.1.6-2 below.

FIGURE 2.1.6-4

MIXER CONTROL - I/O ENABLE REGISTER R7

TABLE 2.1.6-1

I/O ENABLE TRUTH TABLE

TONE ENABLE TRUTH TABLE
R/ BITS Tone tnabled
B2 Bl B0 on Channel
0 0 0 C B A 0 0 1 C B - 0 1 0 C - A 0 1 1 C 10 0 B A 1 0 1 B - 1 1 0 A 1 1 1

TABLE 2.1.6-2

I/O PORT TRUTH TABLE

R7 BITS	I/O Port Status					
B6	IOA					
0 1	Input output					

NOTE

Disabling noise and tone does not turn off a channel. Turning a channel off can only be accomplished by writing all zeroes into the corresponding Amplitude Control register, R8, R9 or R10 (refer to Paragraph 2.1.6.4).

2.1.6.4 Amplitude Control (Registers R8, R9, R10)

The amplitudes of the signals generated by each of the three D/A Converters (one each for Channels A, B, and C) is determined by the contents of the lower 5 bits (B4-B0) of Registers R8, R9 and R10 as illustrated by Figure 2.1.6-5.

FIGURE 2.1.6-5
D/A CONVERTER SIGNAL GENERATION

AMPLITUDE CONTROL REGISTER #	CHANNEL
R8	A
R9	В
RI O	С

2. 1. 6. 4 (continued)

The amplitude 'mode' (Bit M) selects either fixed level amplitude (M=0) or variable level amplitude (M=1). It follows then that Bits L3-L0 defining the value of a 'fixed' level amplitude, are only active when M=0. When fixed level amplitude is selected, it is 'fixed' only in the sense that the amplitude level is under the direct control of the system processor (via bits L3-L0). Varying the amplitude when in this 'fixed' amplitude mode requires in each instance the direct intervention of the system processor via an address latch/write data sequence to modify the L3-L0 data.

When M=1 (select 'variable' level amplitudes), the amplitude of each channel is determined by the envelope pattern as defined by the Envelope Generator's 4-bit output E3-E0 (refer to Paragraph 2.1.6.5).

The amplitude 'mode' (Bit M) can be thought of as an 'envelope enable' bit, i.e. when M=0 the envelope is not used, and when M=1 the envelope is enabled.

Figure 2.1.6-6 illustrates all combination of the 5-bit Amplitude Control.

FIGURE 2.1.6-6

AMPLITUDE CONTROL REGISTERS

AMPLITUDE CONTROL	
REGISTER #	CHANNEL
R8	<u> </u>
R9	В
Rl O	C

NOT USED	B4 M	B3 L3	B2 L2	B1 LT	B0 1.16] Ampl:		le Co itput	ontrol	
	0 0 0 0	. * . * . i	•	0 : i	0 : i	*0	0	0	0	The amplitude is fixed at 1 of 16 levels as determined by L3-L0.
	1	Х (X =	X Don'	X t Ca	X ire)	Е3	E2	El	EO	The amplitude is variable at 16 levels as determined by the output of the Envelope Gen.

^{*}The all zeros code is used to turn a channel "off".

2. 1. 6. 4 (continued)

Figure 2.1.6-7 graphically illustrates a selection of variable level (envelope-controlled) amplitude where the 16 levels directly reflect the output of the Envelope Generator. A fixed level amplitude would correspond to only one of the levels shown, with the level directly determined by the decimal equivalent of Bits L3-L0.

FIGURE 2.1.6-7

VARIABLE AMPLITUDE CONTROL (M=1)

2.1.6.5 Envelope Generator Control (Registers Rll, R12, R13)

To accomplish the generation of fairly complex envelope patterns, two independent methods of control are provided in the PSG; first, it is possible to vary the frequency of the envelope using registers Rll and R12; and second, the relative shape and cycle pattern of the envelope can be varied using register R13. The following paragraphs explain the details of the envelope control functions, describing first the envelope period control and then the envelope shape/cycle control.

2.1.6.5.1 Envelope Period Control (Registers Rll, R12)

The frequency of the envelope is obtained in the PSG by first counting down the input clock by 256, then by further counting down the result by the programed 16-bit Envelope Period value. This 16-bit value is obtained in the PSG by combining the contents of the Envelope Coarse and Fine Tune registers, as illustrated by Figure 2.1.6-8.

FIGURE 2.1.6-8

16-BIT ENVELOPE PERIOD (EP) TO ENVELOPE GENERATOR

ENVELOPE COARSE TUNE REGISTER R12 ENVELOPE FINE TUNE REGISTER RII

B7 B6 B5 B4 B3 B2 B1 B0

B7 B6 B5 B4 B3 B2 B1 B0

EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP81EP7 EP6 EP5 EP4 EP3 EP2 EP1 EP0

Note that the 16-bit value programmed in the combined Coarse and Fine Tune registers is a <u>period</u> value - the higher the value in the registers, the lower the resultant envelope frequency.

The envelope frequency equations are:

(a)
$$fE = \frac{fCLOCK}{256 EP}$$
 (b) $EP = 256 CT + FT$
10

Where:

fΕ Desired envelope frequency fCLOCK= Input clock frequency Decimal equivalent of the Envelope EР Period bits EP15-EP0 10 CT Decimal equivalent of the Coarse 10 Tune register bits 87-80 (EP15-EP8) FT Decimal equivalent of the Fine Tune register bits B7-B0 (EP7-EP0) 10

10

From the above equation it can be seen that the envelope frequency can range from a low of fCLOCK/16, 766, 960 (wherein EP = 65, 535) 10 10 10 to a high of fCLOCK/256 (wherein EP =1). Using a 1.76475 MHz clock,

for example, would produce a range of envelope frequencies from 0.105 Hz to 6893.6 Hz.

To calculate the values for the contents of the Envelope Period Coarse and Fine Tune registers, given the input clock and the desired envelope frequencies, we rearrange the above equations, yielding:

(a)
$$EP = \frac{fCLOCK}{256 fE}$$
 (b) $CT + FT = EP$
 $10 = \frac{10}{256} = \frac{10}{256}$

Example:

$$fE = 0.5 Hz$$

 $fCLOCK = 1.76475 MHz$

$$EP = \frac{1.76475 \times 10^{6}}{256(0.5)} = 13787$$

Substituting this result into equation (b):

$$\begin{array}{rcl}
\text{CT} & = & 53 & = & 00110101 & & (B7-B0) \\
10 & & & & & & & & & & & & \\
\end{array}$$

$$\mathbf{FT}_{10} = 219 = 11011011$$
 (B7-B0)

2. 1. 6. 5. 2 Envelope Shape/Cycle Control (Register R13)

The Envelope Generator further counts down the envelope frequency by 16, producing a 16-state per cycle envelope pattern as defined by its 4-bit counter output, E3-E0. The particular shape and cycle pattern of any desired envelope is accomplished by controlling the count pattern (count up/count down) of the 4-bit counter and by defining a single-cycle or repeat-cycle pattern. This envelope shape/cycle control is contained in the lower 4 bits (B3-B0) of register R13. Each of these 4 bits controls a function in the envelope generator, as illustrated in Figure 2.1.6-9.

FIGURE 2.1.6-9

ENVELOPE SHAPE/CYCLE CONTROL REGISTER (R13)

The definition of each function is as follows:

HOLD

When set to logic "1", limits the envelope to one cycle, holding the last count of the envelope counter (E3-E0 = either 0000 or 1111, depending on whether the envelope counter was in countdown or countup mode respectively.

ALTERNATE

When set to logic "l", the envelope counter reverses count direction (up-down) after each cycle.

NOTE

When both the Hold bit and the Alternate bit are ones, the envelope counter is reset to its initial count before holding.

ATTACK

When set to logic "l", the envelope counter will count up (attack) from E3-E0 = 0000 to E3-E0 = 1111; when set to logic "0", the envelope counter will count down (decay) from 1111 to 0000.

CONTINUE

When set to logic "l", the cycle pattern will be as defined by the Hold bit; when set to logic "0", the envelope generator will reset to 0000 after one cycle and hold at that count.

To further describe the above functions, numerous charts of the binary count sequence of E3-E0 could be used, showing each combination of Hold, Alternate, Attack and Continue. However, since these outputs are used (when selected by the Amplitude Control registers) to amplitude modulate the output of the Mixers, a better understanding of their effect can be accomplished via a graphic representation of their value for each condition selected, as illustrated in Figures 2.1.6-10 and 2.1.6-11.

FIGURE 2. 1. 6-10
ENVELOPE GENERATOR OUTPUT

FIGURE 2.1.6-11

DETAIL OF TWO CYCLES OF FIGURE 2.1.6-10

2.1.6.6 I/O Port Data Store (Register R14)

Register R14 functions as an intermediate data storage register between the PSG/CPU data bus (DA7-DA0) and the I/O Port (I0A7-I0A0). This port is available for reading the joysticks. Using register R14 for the transfer of I/O data has no effect at all on sound generation.

To output data from the CPU bus to a peripheral device connected to I/O Port A would require the following steps:

- 1. Latch address R7 (select Enable register)
- 2. Write data to PSG (setting R7, B6=1)
- 3. Latch address R14 (select IOA register)
- 4. Write data to PSG (data to be output on I/O Port A)

To input data from I/O Port A to the CPU bus would require the following:

- 1. Latch address R7 (select Enable register)
- 2. Write data to PSG (setting R7 B6=0)
- 3. Latch address R14 (select IOA register)
- 4. Read data from PSG (data from I/O Port A)

Note that once loaded with data in the output mode, the data will remain on the I/0 port until changed either by loading different data, by applying a reset (grounding the Reset pin), or by switching to the input mode.

Note also that when in the input mode, the contents of register R14 will follow the signals applied to the I/O port, However, transfer of this data to the CPU bus requires a "read" operation as described above.

2.1.7 Joystick Port Operation

The joystick port (Register 14 of the Sound Chip - Section 2.1.6.6) is read via an IN-instruction directed at port F6H with selection of activating data from the left (player 1) or right (player 2) determined by Address bits 8 and 9 as shown in Figure In order to address Register 14, a OEH must be written to port F5H (Sound Generator Address) prior to reading joystick Section 4.4 describes the software sequence necessary to control this hardware.

example of Figure 2.1.7-1, the joystick, schematically in the lower left of the drawing, is composed of a movable center stick which is pushed up to touch the up-contact and, therefore, electronically connects pin-8 to pin-1. In **this** a read of port F6H with address bit A8 high, causes actions as follows:

- (1) (2) Address A8 high turns on transistor Q8
- Q8 drives cable pin-8 low
- (3) The movable center stick of the joystick in contact with the up-contact results in a conductive path from cable pin-8 to cable pin-1.
- **(4)** Pin-l low results in a 0 in bit position 0 of the I/O register via the isolation diode.

The various positions of the stick similarly result in various bits being read from the I/O register.

Note that +5 volts and ground are available on the connector so +5V logic could be attached to the joystick port.

FIGURE 2.1.7-l Joystick **port operation**

2.1.8 Control Logic

The control logic of the TS2068 is primarily a Standard Cell Logic Device in a 68-pin JEDEC leaded carrier package and includes the following major functions:

SECTION	FUNCTION
2. 1. 8. 1	Bank Selection Logic
2. 1. 8. 2	Z-80 Clock Generation
2. 1. 8. 3	Display Timing, DMA Display File Access, Attribute Control, and Pixel Data Serial Shift
2. 1. 8. 4	Interruption Generation
	BEEP Output (See Section 2.1.13.2)
	CASSETTE I/O (See Section 2.1.12).

Additionally, Table 2.1.8-1 provides a description of the function of each SCLD I/O pin. See the System Schematic in Appendix D for pin numbering.

2.1.8.1 Bank Selection Logic

The TS2068 is a Z-80 based computer, therefore it can directly address only 64K bytes of memory via its 16-bit address. Additionally, since the Z-80 has no relocation or indirection capability, the conventional technique of extending the memory space available to the Z-80 is bank switching. The TS2068 provides extended bank switching by allowing selection of memory in 8K "chunks" which are identified by bank number and chunk number as illustrated in Figure 2.1.8-1 for the internal bank selection logic. The externally sourced $\overline{\beta E}$ (Bank Enable) signal can be used by external logic to disable the internally controlled memories.

As shown in Figure 2.1.8-1:

- (1) The cartridge is selected on a memory access with:
 - a. Port FF bit 7 = 0
 - b. The HSR at port F4h has a "1" in the bit selected by a decode of Address bits A13-A15. and
 - C. BE is high

causing activation of \overline{ROSCS} (ROS Chip Select).

- (2) The EXROM bank is selected on amemory access with:
 - **a.** Port FF bit 7 = 1
 - b. The HSR at port F4H has a "1" in the bit selected by a decode of Address bits Al3
 Al5.
 - c. BE is high

causing the activation of EXROM (Ext. ROM Enable)

- (3) The Home Bank is selected on a memory access with
 - a. The HSR at Port F4H has a "0" in the bit selected by a decode of Address bits Al3 · Al5.
 - b. BE is high.

causing the activation of the appropriate enable signal as detailed below.

To understand the details of the schematic, of Section 2.2 (Appendix D):

- (1) SELECT CARTRIDGE of Figure 2.1.8-1 involves activating ROSCS to its low active state
- (2) SELECT EXROM of Figure 2.1.8-1 involves activating EXROM to its low active state
- (3) SELECT HOME BANK of Figure 2.1.8-1 involves
 - a. Activating ROMCS to its low active state when A15=0 and A14=0
 - b. Activating CASI to its low active state when A15=0 and A14-1
 - c. Activating CAS2 to its low active state when Al5=1 and Al4-0
 - d. Activating CAS3 to its low active state when Al5=1 and Al4=1.

FIGURE 2.1.8-1
BANK SELECTION LOGIC

TABLE 2.1.8-l

SCLD I/O PIN FUNCTION DEFINITIONS

DIRECTION OF SCID

SYMBOL	NAME	OF SCLD IN/OUT	FUNCTION
AO- A7 Al 3- A15	Address Bus	In	Address Bus lines Input from Z80A
DO- D7	Data Bus	In/Out	Data Bus inputs/outputs from/to Z80A through U9-74LS245 or inputs from display RAM (16K) · U6 and U7
KB0- KB4	Keyboard Outputs	In	Inputs from 5 lines of keyboard matrix - goes low at one of 8 address line (active low) sequences on I/O Request
A7R	A7+Refresh	out	To refresh and address 8th bit address line input of RAM memory (not display) of 32K of 4416 RAM's (Home Bank 8000H to FFFFH)
MAO- MA7	Muxed Adrs. Bus	out	Display memory muxed address bus and refresh
TS	Tri-State Display Menory Ctl.	out	Tri-State control for address and data buffers when CPU is addressing display memory at same time display controller is addressing the display memory
OCPU	Clock to CPU	out	CLK - Clock to Z80A CPU which is interrupted to stop CPU when CPU wants to address display RAM at same time as display controller
RD≭	Read Direction Control to SCLD	out	To control read/write direction of 74LS245 Data Bus Buffer between CPU and SCLD
ROMCS	Home ROM Chip Select	out	To activate the 16K Home ROM (first 16K) when memory selection (MS) is set to Home Bank
RAST	Row Address Strobe #1	out	To activate row address strobe for display memory only during memory read/write, refresh and display read

TABLE 2.1.8-1

SCLD I/O PIN FUNCTION DEFINITIONS (continued)

		(Continue	eu)
SYMBOL	NAME	DIRECTION OF SCLD IN/OUT	FUNCTION
CASI	Colum Address Strobe #1	out	To activate column address strobe for display memory only (2nd 16K) durinq memory read/write and display read
CASZ	Colum Address Strobe #2	out	To activate column address strobe for Home Bank RAM (3rd 16K)
CAS3	Column Address Strobe #3	out	To activate column address strobe for Home Bank RAM (4th 16K)
DRAMME	Dynamic RAM Write Enable	out	When active low, enables a write into the display RAM only
MUX	Mx Control of RAM Address	out	Mix control to 74LS157 (UlO & Ull to multiplex the row and column addresses to all dynamic RAM's
V	Chrona Vector V	out	Color vector level for quadrature (R-Y) input to video modulator
Y	Luni nance 7	out	Luminance (briqhtness) control level
RD	Read to CPU	In	CPU is reading from a memory or I/O location
WR	Write from CPU	In	CPU is writing to a memory or ${\rm I/O}$ location
MREQ	Memory Request	In	CPU is requesting access to a memory location to read or write
TORQ	I/O Request	In	CPU is requesting access to an I/O location to read or write

TABLE 2.1.8-1

SCLD 1/0 PIN FUNCTION DEFINITIONS (continued)

SYMBOL	NAME	DIRECTION OF SCLD IN/OUT	FUNCTI ON
BINDOL	14/21/21	1117 001	TONCITON
RFSH	Refresh	In	CPU is generating a refresh address to refresh dynamic RAM's
Tape In	Tape Input	In	Magnetic tape signal input
BE	Bank Enable	In	When active low, indicates that internal memory is disabled (Home, Extension and Dock Banks) and an external memory is in use
EXROM	Extension ROM Select	out	Active low chip select signal for Extension ROM
vcc	+5 Volt Power	In	Power (+5Y) input to SCLD
INT	Interrupt to CPU	out	Interrupts CPU to handle keyboard strobing and timer for PAUSE command. Open drain N channel with internal pull-up
ROSCS	ROS Chip Select	out	ROM Oriented Software (Cartridge Bank) Chip Select
SPKR/TAPE OUT	Speaker and Tape Output	out	Digital output to magnetic tape and to sound amplifier for speaker output
oc	Clock "C"	out	Clock for sound chip 81.764 MHz.
BDIR	Bus Direction to Sound Chip	out	A bus direction control signal to the PSG. When high the sound chip either receives a write to PSG or latches addresses from the data bus
BCl	Bus Control to Sound Chip	out	A bus control signal to the PSG. When high the sound chip either is read to data bus or latches addresses from the data bus

TABLE 2.1.8-1 SCLD I/O PIN FUNCTION DEFINITIONS (continued)

SYMBOL	NAME	DIRECTION OF SCLD IN/OUT	FUNCTION
OSC out	oscı'llator Out	out	Xtal Oscillator amplifier output to drive crystal
OSC In	Oscillator In	In	Xtal Oscillator amplifier input to sense crystal signal
U	Chrona Vector U	out	Color vector level for quadrature (B-Y) input to video modulator
GND	Ground	In	Ground return of SCLD
δ	Buffered Clock	out	Buffered CPU clock to outside (Jl connector)
R	Red Color Output	Out	Produce color signals to RGB monitor (TTL level)
G	Green Color output	out	Produce color signals to RGB nonitor (TTL level)
В	Blue Color output	out	Produce color signals to RGB monitor (TTL level)

2.1.8.2 Z-80 Clock Generation

The oscillator circuit utilizes an AT-cut quartz crystal at 14.112 MHz. This oscillator feeds a divide by 4 chain to generate the 3.528 MHz clock for the CPU (0 CPU). This clock runs continuously except when the CPU addresses the 16K bytes of RAM containing the video display file at the same time the video display processor logic requires access to that same RAM. For this contention case the CPU clock is stopped in the high state until the video display processor access has been completed, then the CPU clock continues in its normal manner.

2.1.8.3 Display File H/W Control and Timing

The 14.112 MHz oscillator is also used to drive the counter chain deriving video timing. By dividing the 14.112 MHz. signal by 896 a 15.75 KHz horizontal sweep frequency is generated. The 15.75 KHz signal feeds a 9-stage counter which counts from 0 to 106H (262 decimal) developing the 60.1145 Hz vertical sync. See Figure 2.1.8-2.

During each horizontal scan the video display processor accesses, in the standard video mode, 32 bytes of pixel data plus 32 bytes of attributes by 32 memory accesses reading 2 bytes per access in RAM page mode, i.e. the low order address bits are provided to the RAM once via RAS activation, then the data byte is read during the first activation of CAS and the attribute byte is read during the second activation of CAS. The page mode operation is completed by deactivating RAS. (See Fig. 2.1.8-2.)

The accessed pixel data is serially shifted out to the video generation circuitry at a rate of 1 bit each 142 nanoseconds (7.056 MHz) resulting in the need to fetch a new data/attribute pair each 1.134 microseconds during the horizontal The shifted out pixel scan time. information is used to control the selection of the 3 paper color (pixel=0) or 3 ink color (pixel=1) bits to be qated out as the R, G, and B signals. When FLASH is enabled by the attribute byte, the INK and PAPER field information is swapped at the 1.879 Hz. flash rate. R, G, and B signals control the D-to-A converter which generates the proper U, V, and Y outputs for use by the 1889 to create composite video.

The address information provided to the RAMs duri nq RAS and CAS times is as shown in Figure 2.1.8-2. This address generation logic explains the non-sequential nature of the video display as described in Section 2.1.10.

FIGURE 2.1.8-2

VIDEO DISPLAY PROCESSOR RAM ADDRESS GENERATION (Normal Video Mode)

DISPLAY PIXEL DATA ADDRESS

DISPLAY ATTRIBUTE ADDRESS

VIDEO TIMING COUNTER CHAIN

2.1.8.4 Interruption Generation (17 ms)

During the vertical blanking interval (once each 15.635 ns) the SCLD, if enabled by the INTEN bit (Bit 6) of I/O Port FFH, activates the $\overline{\text{INT}}$ signal which directly connects to the $\overline{\text{INT}}$ input to the 280. A CPU maskable interruption can then occur, as described in Section 2.1.3.7, if enabled.

2.1.9 Keyboard

The keyboard for the TS 2068 has forty-two (42) hard keys (typewriter style) with tactile feel utilizing an over-dead-center type of rubber spring pad and a carbon pill that hits the P.C. board, just under the keyboard, to short-out a pair of closely placed precious metal contacts. The read-out matrix is an eight by five cross point switching as shown in Figure 2.1.9-1.

Each switch closure connects one of the eight high order address lines (by going low through a diode) to one of the five input lines to the SCLD (KBO through KB4).

Scanning is by software algorithm as described in Section 4.1.1. During the IN instruction, address bits AO-A7=FEH select the Keyboard I/O port while bits A8-A15 select the particular 5 keys to be sampled during the particular IN instruction execution. For example, an IN instruction directed at the keyboard I/O port with address bit A8 low and A9-A15 high will supply 0's on KBO, KB1, KB2, KB3, and/or KB4 if the CAP SHIFT, Z, X, C, and/or V keys are respectively denressed.

Note that when reading the $\rm I/0$ port FEH, data bits D5-D7 are not part of the keyboard information.

Section 2.4.7 details the connection of the keyboard to the main P.C. board'.

2.1.10 16K Video Display RAM

The 16K-byte video display RAM, composed of two 4416's, is isolated from the Z80A CPU by the SCLD control logic and buffers to allow the video display processor to access pixel and attribute data from the display files independent of the CPU (see Section 2.1.8.3).

The Video Display RAM is located in Chunks 2 and 3 of the Home Bank, beginning at 400DH and 600DH respectively. Figure 2.1.10-l illustrates the organization of the Primry Display File located at 4000H. The second display file utilizes the same organization. Based on the video mode set via Port FFH, the video hardware accesses the RAM for pixel data and attribute control information.

Flgure 2.1 .9. KEYBOARD SCHEMATIC

FIG. 2.1.10-1
DISPLAY FILE ORGANIZATION (NORMAL MODE)

		T	32 BYTES	32 BYTES		32 BYTE	S
			LINE O	LINE 1	1 •	! L I N	E !
B Scan		4000		4020		40E0 40E1	F
L		14400 0	4101411F	4120413F			
	2	4200	4201 421 F	4220423 F	• • • • • • • • • • • •		
C	3	4300		4320433 F		1 2020 2022	
K	4	4400	4401 441 F	4420443 F		,	
	5	4500	4501451 F	4520453 F		45E0 45E1	
0	6	4600	4601 46	1F 4620463F			
	7	4700	4701 47	1F 4720473F			
			CHAR CHAR	ı	•	CHAR.CHAR.	CHAR.
		POS.	POS. POS.			POS. POS.	POS.
		0/0	0/1 0/31			7/0 7/1	7/31
			32 BYTES	32 BYTES		22 DVTE/	•
		,	LINE 8	LINE 9	1	32 RYTE(_
B Scan	n	4800		4820 483F		! LINE 15	
	ĭ	4900	40014015	4920493F		48E0 48E1 49E0 49E1	.48FF
L	2	4A00	45014511 4801 481E	4A204A3F	• • • • • • • • • •		
č	3	4B00	4R01 /R1F	4B204B3F	• • • • • • • • •		
ĸ	4	4C00	4001 401F	4C204C3F	• • • • • • • • • •		
1"1	5	4D00	4001 401F	4D204D3F	• • • • • • • • • •	4CEO 4CE1	
11	6	4E00	4F01 4F1F	4E20 4E3F	• • • • • • • • • •		
11	7	4F00	4F01 4F1F	4F204F3F	• • • • • • • • • • •	4EE0 4EE1	
<u> </u>	<u>'</u>	CHAR.	CHAR. CHAR.		• • • • • • • • • • •	CHAR, CHAR,	CHAR.
		POS.	POS. POS.	•		POS. POS.	POS.
		8/0	8/1 8/31			15/0 15/1	15/31
		0,0	0/01			13/0 13/1	13/31
			OO DWEEC			OO DV/DT	n
		, ——	32 BYTES	32 BYTES	1	32 BYTES	
B Scan	7	5000	LINE 16 50001501F	LINE 17		EOI 50E1	
J Scan	1	5100		5120513F		51E0 51El	
L	2	5200	5101511F	5220523F		52E0 52E1	
	3	5300	5201	5320533F			53FF
١ĸ١	4		5401 541F	F400 F40F		54E0 54E1	54FF
1"1	5	5500		5520553F · · · ·		55E0 55E1	
2		5600	5601	5520·····553F · · ·		56E0 56E1	
~						57E0 57E1	
	<u> </u>	CHAR	CHAR CHAR	11 3/20: 3/31		CHAR. CHAR.	CHAR.
			POS. POS.			POS. POS.	
			16/1 16/3	1		23/0 23/1	23/31
		, .		•		,,	, - .
ATTRIBU	TE	FILE:					
BLOCK	 -	LINE	O LINE		IES 2 - 6	TAIL	7
0					1L3 & - 0	LINE	, 2022
BLOCK		TNF	8 TINE) JOST JOST	JFC 10-14	58DF 58E0	15
) I	50	00	591F 5020	, 203E 2010	163 10-14	EODE EOEU	5000
BLOCK	33	LINE	16 INF	7 3340	JFC 18-22	59DF 59E0	73
2	5A(00	.5A1F 5A20	5A3F 5A40	12 10-22	5ADF 5AEO	SAFF
	-, .,		Tours	30.00 30.40 <u></u>		TI ONDI JALO	

2.1.11 Video Generation

2.1.11.1 Composite Video

The U, V, and Y signals from the SCLD are supplied to the LM1889 and associated circuitry to produce composite video and modulated RF. This circuitry produces color vectors at approximately the following angles:

PHASE	TS 2068	NTSC STANDARD	
	(Degrees)	(Degrees)	
Bl ue	350	350	
Magenta	64	62	
Red	116	112	
Green	242	240	
Cyan	284	284	
Yellow	170	170	
Reference	224	180	

The Front Porch, Sync Pulse, Back Porch, and Color Burst portions of the composite video signal are illustrated in Figure 2.1.11-1. In proper adjustment the following should be observed:

Sync Pulse = 40 +/- 2 IRE units Color Burst = 35 to 45 IRE units Color Burst Freq. = 3.579545 MHz. +/-70 Hz

The following three facts may aid in understanding problems with certain monitors.

- 1. The color burst is not synchronous with the waveform since it is generated from the 3.579545 MHz crystal and the waveform is derived from the 14.112 MHz crystal. The result is observed ripples at color boundaries, e.g. green to magenta.
- 2. The color burst duration is 8 cycles while standard TV broadcast stations provide 9 cycles. This "short" burst is a problem for some monitors.
- 3. The color burst starts 6.4 microseconds from the leading edge of sync. Many monitors are designed to expect this start as early as 5.3 microseconds, thus these monitors may not produce color when attached to the TS 2068.

FIGURE 2.1.11-1

COMPOSITE VIDEO SIGNALS

2.1.11.2 RF Modulator

The composite video information is used to AM modulate the selected channel frequency via the LM 889 associated Channel 2/3 and The modulated output is filtered circuitry. through the output filter network to reduce comply harmoni c generation to The RF circuitry is physically requi rements. contained inside the RF-can at the rear left corner of the PCB (at the RF output jack). 75 ohms is the output impedance.

2. 1. 12 Cassette I/0

See Sections 2.1.13.2, 2.4.3 and 4.2.

2.1.13 Port Map

Table 2.1.13-1 summrizes the I/O addressing of ports utilized by the TS 2068. Details of the data bits of each of these ports is provided by the following sections.

2.1.13.1 Display Enhancement Control (Port FFH)

The display enhancement control register within the SCLD controls:

- a) Selection of Enhanced Video Modes
- b) Ink selection for 64-Column Mode
- c) Enable/Inhibit the 17 ms interruption to the Z80
- d) Selection of Extension ROM or Cartridge (see Section 2.1.8.1)

D7	D6	D5	D4 D	3 D	2 D1	DO
			Column Mod er Select	-	Video Selec	
		001 - 010 - 011 - 100 - 101 -	Black/Whi Blue/Yell Red/Cyan Magenta/G Green/Mag Cyan/Red Yellow/Bl White/Blac	ow Freen enta ue	001 - 010 - 110 - Othe	Normal (Primary Display File) Second Display File High Res. Graphics 64-Column Mode r combinations may uce unpredictable
	ROM/ Ca	(0 to	17 ms In Enable) e Select	nterru	ption	

TABLE 2. 1. 13-1

I/O PORT MAP

PORT
ADDDECC

	A	DDRESS	S		
FUNCTION	(HEX)(DE	CIMAL)(BINARY)	OPERATION	REFERENCE
Display Enhancement Control	FF	255	11111111	R/W	2. 1. 10, 2. 1. 13. 1, 3. 2. 2. 3, 5. 2
Keyboard/Tape I/0	FE	254	11111110	R/W	2. 1. 9, 2. 1. 13. 2, 2. 4. 3, 4. 1. 1, 4. 2
Reserved	FD	253	11111101		
Reserved	FC	252	11111100		
TS 2040, Printer	FB	251	11111011	R/W	2. 1. 13. 3, 4. 1. 3
Sound Chip & Joystick Data	F6	246	11110110	R/W	2. 1. 6, 2. 1. 7, 2. 1. 13. 4 2. 4. 4, 4. 3, 4. 5
Sound Chip Address	F5	245	11110101	W	Same
Horizontal Select Register	F4	244	11110100	R/W	2. 1. 8. 1

2.1.13.2 Keyboard/Tape I/O (Port FEH)

Port FEH is used to input Keyboard and Tape data and to output Border color, Tape data, and Sound (BEEP) tones.

READ (IN)

WRITE (OUT)

2.1.13.3 TS 2040 Printer (Port 1XXXX0XX)

The TS 2040 Printer peripheral is written to and status read from via 0UT and IN instructions with Bit 7 = 1 and Bit 2 = 0 (other bits are not decoded by the printer).

READ (IN)

WRITE (OUT)

2. 1. 13. 4 Sound Chip & Joystick (Ports F5H and F6H)

Ports F5H and F6H are used to control and access the Sound Generator and the Joysticks. Details of the registers available via these ports is contained f n Sections 2.1.6 and 2.1.7.

2.1.13.5 Horizontal Select Register (Port F4H)

The HSR addressed via Port F4H is used in the control of the Bank Switching logic as detailed fn Section 2.1.8. Each bit, when set, enables the corresponding 8K memory "chunk" in either the Dock Bank (Port FF, Bit 7=0) or the Extension ROM Bank (Port FF, Bit 7=1). The HSR must be set to all zeroes in order to enable the entf re Home Bank.

2.2 Schematic Diagram

Appendfx D contains a detailed schematic diagram of the TS 2068.

2.3 Unit Absolute Ratings

FUNCTION	DESCRIPTION	MIN	MAX
TS	Storage Temperature	- 40c	+65C
VAC	AC Line Voltage	105v	130v
Ta	Operating Ambient Temp	0 C	40c
Vfn	Voltage on any Logic Pin	- 0. 3v	+5. 3v
Vfn (EAR)	EAR input Peak AC	- 2. 0v	+5. 0 v
Vdc (IN)	Input DC Voltage	14.75V	26V

2.4 Interfaces and Connectors

The TS2068 has a number of specialized interfaces that are accessible via the following connectors:

CONNECTOR	ТҮРЕ	LOCATION
System Bus Cartridge MCC EAR Player 1 Joystic	2X32 Card Edge 2X18 Card Edge 1/8" Mini Phone 1/8" Mini Phone x 9-pin "D"	Right Rear Under TCC door Rear Rear Left Side
Player 2 Joystic Monitor TV Keyboard AC Adapter	k 9-pin "D" RCA Phono RCA Phono 14-pin SIP	Right Side Rear Rear Inside-Left Rear Rear

2.4.1 System Bus Connector - Pl

The TS2068 provides a 2 X 32 pin connector, which is designated as Pl, at the right rear corner of the console. The mechanical, functional, and electrical requirements of the system buss connector are detailed in the following tables and figures:

Signal Electrical Characteristics

FIGURE/TABLE		TITLE		
Figure 2.4.1-1	Pl	Mating Require		Mechani cal
Figure 2.4.1-2	Pl	Si gnal	Layout	
Table 2.4.1 · 1	Pl	Signal	Definition	1

FIGURE 2.4.1-1

Table 2.4.1 · 2 Pl

PI MATING CONNECTOR MECHANICAL REQUIREMENTS

MOLDED IN KEY SCALE: NONE **SCALE: NONE **SCALE:

SPECIFICATIONS:

LTR	DIMENSION #
٦	82.55 (3.25)
w	9.52520.127 (.3752.005)
н	13.9720.254 (.5502.010)
A	2.54 (.100)
8	31 EQUAL SPACES AT 2.54 (.100) = 78.74 (3.100)
С	2.54 (.10)
D	1.727 (.068) MAX
E	8.38210.508 (.3301.020)
F	FOR 1.575 (.062) BOARD

#All dimensions are in millimeters, dimensions shown (XX.X) are in inches.

NOTES:

- 1. INSULATOR MATERIAL: Insulator body shall be 30% glass-filled polyester and shall meet UL94V-0 requirements.
- 2. CONTACT MATERIAL: Contact material shall be phosphor bronze.
- 3. CONTACT FINISH: Contacts shall be selectively plated with gold, 0.00038 (.000015) thick over nickel on contact surfaces.
- 4. INSERTION FORCE: Insertion forces shall be 170.1-283.5 grams (6-10 oz) per contact pair using a 1.575 (.062) flat steel test blade
- 5. WITHDRAWAL FORCE: Withdrawal forces shall be 225.8-340.2 grams (8-12 oz) per contect pair using a 1.575 (.062) flat test bisde.
- 6. NORMAL FORCE: Normal force shall be 85.05 grams (3 oz) minimum when mated with a 1.37 (.054) thick test board.
- 7. PURCHASE FROM: Sen Diego Microtronics INC. Sen Diego, CA 92123.

FIGURE 2.4.1-2

P1 CONNECTOR SIGNAL LAYOUT

COMPONENT SIDE

NON-COMPONENT SIDE

(VIEW FROM FRONT OF COMPUTER)

TABLE 2.4.1 - 1

Pl SIGNAL DEFINITION

PIN #	SIGNAL NAME	DESCRIPTION
1A	GND	Signal Ground
1B	GND	Signal Ground
2A	EAR	EAR Input
2B	SPKR/TAPE OUT	Speaker/Tape Output
3A	A7RB	Refresh Address Bit 7 Buffered
3B	+15v	+15 Volts DC
4 A	D7	Data Bus Bit 7
4B	+5v	+5 Volts
5A	DZIN	Daisy In (Not Connected)
5B	Not Used	_
6A 6B	Slot Slot	_
7A	D0	— Data Bus Bit 0
7B	GND	Power Ground
8A	Dl	Data Bus Bit 1
8B	GND	Power Ground
9A	D2	Data Bus Bit 2
9B	<u></u> 0	CPU Clock (Inverted)
10A	D6	Data Bus Bit 6
10B	A0	Address Bus Bit 0
11A	D5	Data Bus Bit 5
11B	Al	Address Bus Bit 1
12A	D3	Data Bus Bit 3
12B	A2	Address Bus Bit 2
13A	D4	Data Bus Bit 4
13B	A3	Mdress Bus Bit 3
14A	INT	Interrupt Bequest (Active Low)
14B 15A	A15B NMI	Address Bus Bit 15, Buffered Non-Maskable Int.(Active Low)
15B	A14B	Address Bus Bit 14, Buffered
16A	HALT	CPU HALT Indicator (Active Low)
16B	A13B	Address Bus Bit 13, Buffered
17A	MREOB	Memory Request (Active Low), Bfrd.
17B	A 1 2	Address Bus Bit 12
18A	TORQB	I/O Request (Active Low), Bfrd.
18B	<u>Al l</u>	Mdress Bus Bit 11
19A	RDB	Read (Active Low), Buffered
19B	<u>A10</u>	Mdrees Bus Bit 10
20A	WRB	Write (Active Low), Buffered
20B	A9 BUSAK	Mdress Bus Bit 9 Bus Acknowledge (Active Low)
21A		5 ,
21B 22A	A8 WAIT	Mdress Bus Bit 8 CPU WAIT (Active Low)
22A 22B	A7	Mdresa Bus Bit 7
23A	BUSRO	Bus Request (Active Low)
23A 23B	A6	Address Bus Bit 6
24A	RESET	CPU Reset (Active Low)
24B	A5	Address Bus Bit 5
25A	MÎ	CPU Ml State (Active Low)
25B	<u>A4</u>	Address Bus Bit 4
26A	RFSHB	Refresh (Active Low), Buffered
26B	DZOUT	Daisy Out (Not Connected)
27A	EXROM	Extension ROM Enable (Active Low)
27B	R	Color Signal - Red
28A	ROSCS	ROS Chip Select (Active Low)
28B	G	(Dock Bank Enable) Color Signal - Green
28B 29A	BE	Bank Enable (Active Low)
29A 29B	В В	Color Signal - Blue
30A	IOA5	0191111
3 0 B	BUSISO	
31A	SOUND	Analog Sound Signal Output(0-5V)
31B	VIDEO	Composite Video Signal Output
32A	GND	Signal Ground
32B	GND	Signal Ground
	Ī	

NOTE: All A Pins are on component side of board All B Pins are on non-component (soldering) side of board

TABLE -2.4.1-2
Pl SIGNAL ELECTRICAL CHARACTERISTICS

-	CAPACITIVE		ROM TS2068			IN	NPUTS TO TS2O6	INPUT
	LOADING	V(OL)	I (LOAD)	V(OH)	V(IL)	V(IH)	I IN (MAX)	CAPACITI
	MAX	MAX	MAX	M IN	MAX	MI N		LOADIN
NEMONI C	(PF)	VOLTS	(MA)	VOLTS	VOLTS	VOLTS	uA	MAX (PF)
1158	30	0. 5	1.8	2. 4	0.8	2.0	1800	40
A14B	30	0. 5	1.8	2.4	0.8	2.0	1800	40
13B		0. 5	1.8	2.4	0.8	2.0	1800	40
112	30	0. 4	1.8	2.4	0.8	2.0	1800	74
111	30	0.4	1.8	24	0.8	2.0	1800	74
10	30	0.4	1.8	24	0.8	2.0	1800	74
19	30	0.4	1.8	2.4	0. 8	2.0	1800	76
18	30	0.4	1.8	2.4	0.8	2.0	1800	76
1?	30	0.4	1.8	2.4	0.8	2.0	1800	72
16	30	0. 4	1.8	2.4	0.8	2.0	1800	72 70
15	30	0.4	1.8	2.4	0.8	2.0	1800	72
14	30	0. 5	1.8	2.4	0.8	2.0	1800	12
13	00	0. 4	1.8	2.4	0.8	2.0	1800	72 72
12	30	0.4	1.8	2.4	0.8	2.0	1800	72 72
\1 \0	30	0.4	1.8	2.4	0.8	2.0	1800	72
40 A7RB	30 30	0.4	1.8	2.4	0.8	2.0	1800	98
A/KB		0.5	0. 35	2.7	0.8	2.0	20	120
WRB _	30	0.5	12	2.4	0.8	2.0	20 20	10 10
RFSHB	30 30	0. 5 0. 5	12 12	2. 4 2. 4	0. 8 0. 8	2. 0 2. 0	20 20	10 10
KTSIIB EXROM	30 30	0. 5 0. 5	12	2. 4 2. 4	U. 8	Z. U	20	10 - *
ROSCS	30		12	2.4				
REQB	30	0. 5 0. 5	12	2. 4 2. 4	0.8	2. 0	20	10
RDB	30 30	0. 5 0. 5	12 12	2. 4 2. 4	0.8	2. 0 2. 0	20	10
ND N	30 30	0. 3 0. 4	1. 8	2.4	0.8	2. 0 2. 0	20	10
BE	30 	U. 4	1.0	2.4	0.8	2. 0 2. 0	10	12
BUSAK	30	0. 4	1. 8	2.4	U. 8 	۵. U		
MIT	30		1.0	₩. 1	0. 8	2. 0		10
HALT	30	0.4	1. 8	2. 4	0.8	2. 0		10
NM I	30	U. 4	1. 6	2.4	0.8	2. 0 2. 0		10
INT			OPE	N COLLECTOR W	TH PULL-UP	ω. U		
R	50	0.4	1.8	2.4			•••	
G	50	0.4	1.0	2.1			***	
В	50	0.4	1.8	2.4				
VIDEO			75 ohm COAX					
DO	30	0.4	1.8	2. 4	0.8	2. 0	20	120
D1	30	217	1.8	2.4				
D2	30	0.4	1.8	2.4	0.8 0.8	2.0 2.0	20 20	120 120
D3	30		1.8	2.4	0. 8	2. 0	44	120
D4	30	0.4	40.40				20	400 400
D5	30	0.4 0.4	1.8 1.8	2.4 2.4	0.8 0.8	2. 0	20 20	120 120
D6	30	0.4 0.2	1010	9.4.9.4		2.0	M M	100 100
D7 SPKR/TAPE OUT	30 Γ 500	0.5	1.8 1.8 0. 04	0. 3- 0. 5	0.8 0.8	2.0 2.0	20 20	120 120
EAR	15	0.5	1. 6	2. 4	+/- 1.3	+/- 5.0		
SOUND	100	0	1. 0	2.5	- 0. 3	+5.0	me	
y!!&					0. 8	2. 0		 10
-					WITH 220K	DESTRUCTION		

56

2.4.1.1 Attachment of an RGB Monitor

The TS 2068 provides via the Pl rear-edge connector the ability to attach an RGB monitor for excellent picture clarity and resolution. The TTL-level logic signals appear directly on the rear-edge connector of the TS 2068 -- the necessary synch signals can be derived from the simple synch stripper/separator circuit described here.

The Schematic of Figure 2.4.1-3 shows the required connections and electronics. Attachment is via the 64-pin keyed Pl connector. Shielding should not normally be required, but ferrite beads are recommended on each wire to minimize EM, TVI, etc.

Circuit Operation - Rl and the base-emitter junction of Operate as a DC restoration circuit with current flowing only when the composite video input signal from connector pin B31 is at the synch level. With the charge maintained on Cl, Ol conducts only during the synch pulse interval (not during the color burst time). During this conduction interval, the composite synch signal appears in inverted form on the collector of Ol. The O2 stage simply re-inverts the signal, providing at its collector a composite synch signal for the connected monitor.

To provide a separated Vertical synch pulse, R5 and C3 filter the output of Q1 to partially eliminate the Horizontal synch pulses which are shorter than the Vertical synch pulses. The partially filtered inverted signal is re-inverted by Q3, then R6 and C4 complete the elimination of the Horizontal synch pulses so that a separate Vertical synch pulse is supplied for the attached monitor.

Signals R, G, and B from connector pins 827, 828, and B29 can be supplied directly to the attached monitor.

2.4.2 Cartridge Connector - J4

The TS2068 provides a 2 X 18 pin connector (designated J4 on the schematic) under the door at the front right of the console. The table and figures listed below detail the mechanical, functional, and electrical requirements and limits of the J4 Cartridge Connector.

FI GURE/TABLE	TITLE
Figure 2. 4. 2-1	J4 Mating PCB Mechanical Requirements
Figure 2. 4. 2-2	J4 Signal Layout
Table 2.4.2-1	J4 Signal Definition
Table 2.4.2-2	J4 Signal Electrical Characteristics

FIGURE 2.4.2-1

J4 MATING PCB MECHANICAL REQUIREMENTS

- (1) Circuit Board Material: FLGFN C62 Cl/lA2A (94V-0) Copper 1 or 2 sides
- (2) Contact Fingers: Min. 10 millionth MIL-G 45204 Gold over .00005 to .00010 inch low stress nickel.
- (3) Contact Fingers 2 and 36 should be longer than other fingers to latch-up when inserted with power on.

FIGURE 2.4.2-2

J4 SIGNAL LAYOUT

(View from Front)

34

TABLE 2. 4. 2-1

J4 CONNECTOR SIGNAL DEFINITIONS

PIN #	SIGNAL NAME	DESCRIPTION
1	A14B	Address Bus Bit 14, Buffered
2	+ 5v	+5 volts DC
3	A12	Address Bus Bit 12
4	A13B	Address Bus Bit 13, Buffered
5 6	DO	Data Bus Bit 0
6	D7	Data Bus Bit 7
7	Dl	Data Bus Bit 1
8	A0	Address Bus Bit 0
9	02	Data Bus Bit 2
10	Al	Address Bus Bit 1
11	D6	Data Bus Bit 6
12	A2	Address Bus Bit 2
13	D5	Data Bus Bit 5
14	A3	Address Bus Bit 3
15	D3	Data Bus Bit 3
16	A15B	Address Bus Bit 15, Buffered
17	D4	Data Bus Bit 4
18	MREQB	Memory Request (Active Low), Bfrd.
19	TORQB	I/O Request (Active Low), Buffered
20	A7RB	Refresh Address Bit 7, Buffered
21	RDB	Read (Active Low), Buffered
22	MT	CPU M State (Active Low)
23	WRB	Write (Active Low), Buffered
24	A8	Address Bus Bit 8
25	A7	Address Bus Bit 7
26	A9	Address Bus Bit 9
27	A6	Address Bus Bit 6
28	A10	Address Bus Bit 10
29	A5	Address Bus Bit 5
30	Al l	Address Bus Bit 11
31	<u>A4</u>	Address Bus Bit 4
32	RESHB	Refresh (Active Low), Buffered
33	BE	Bank Enable (Active Low)
34	EXROM	Extension ROM Enable (Active Low)
35	ROSCS	ROS Chip Select (Active Low) (Dock Bank Enable)
36	GND	Ground

TABLE 2.4.2-2

J4 SIGNAL ELECTRICAL CHARACTERISTICS

		OUTPUTS F	ROM TS2068 -					INPUTS TO TS206	
	CAPACITIVE LOADING MAX	V(OL)	I(LOAD) MAX	V(OH) MIN	I (LOAI MI N) *V(IL)	V(IH)	I IN (MAX)	INPUT CAPACITIV
MNEMONIC		MAX VOLTS		VOLTS	MIII (uA)	MAX VOLTS	MIN VOLTS		LOADING MAX (PF)
WNEWDNIC	(PF)	VULIS	(MA)	VULIS	(UA)	VULIS	VULIS	uA	WHA (FF)
115B	30	0. 5	1.8	2. 4	10				
114B	30	0. 5	1.8	2.4	10				
13B	30	0. 5	1.8	2.4	10				
12	30	0.4	1.8	2.4	10				
111		0.4	1.8	2.4	10				
110	30	0.4	1.8	2.4	10				
19	30	0.4	1.8	2.4	10				
18	30	0.4	1.8	2.4	10				
17	30	0.4	1.8	2.4	10				
A6	30	0.4	1.8	2.4	10				
A 5	30	0.4	1.8	2.4	10				
44	30	0.4	1.8	2.4	10				
13	30	0. 4	1.8	2.4	10				
A2	30	0.4	1.8	2.4	10				
\1	30	0. 4	1.8	2.4	10				
40	30	0.4	1.8	2.4	1?				
A7RB	30	0.5	0.35	2.7					
ROSCS	30	0.4	1.8	2.4	10				
MREOB		0. 5	1.8	2.4	10				
RDB	30	0. 5	1.8	2.4	10				
I ORQB	30	0. 5	12	2.4	10				
WRB *	30	0. 5	12	2.4	10				
RFSHB		0.5	12	2.4	10				
EXROM	30	0.5	12	2.4	10				
ii	30	0. 5	12	2.4	10				
DO .	30	0.4	1.8				2.0	15	120
D1	30	0.4	1.8	2.4		0.8	2.0	15	120
D2	30	0.4	1. 8	2.4		0.8	2.0	15	120
D3	30	0.4	1.8	2.4		0.8	2.0	15	120
D4	30	0.4	1.8	2. 4		0.8	2. 0	15	120
D5	30	0.4	1.8	2.4		0.8	2.0	15	120
D6	30	0.4	1.8	2.4		0.8	2.0	15	120
D7	30	0.4	1.8	2. 4		0.8	2.0	15	120
Vcc (+5V)		5. 25	300	4. 75					
GND									

2. 4. 3 Cassette I/0

The EAR and MIC connectors provided on the rear of the TS2068 are 1/8" mini-phone jacks requiring 1/8" mini-phone plugs as mating connectors.

The MIC output is filtered by a low-pass filter with a breakpoint of 2.5 kHz and provides a signal output of 0.15 to 0.67 V p-p.

The EAR input is filtered by a low-pass filter with a breakpoint of 23 KHz. Input voltages should be between 4.0 and 10.0 V p-p.

2.4.4 Joystick

The joystick input connectors, one on each side of the TS2068 case, are standard D-pin "D" type connectors for use with 5-switch type joysticks.

Connector layout and the function of each pin is given in Figure 2.4.4-1 and Table 2.4.4-1, respectively.

FIGURE 2.4.4-1

JOYSTICK CONNECTOR

TABLE 2.4.4-1

JOYSTICK CONNECTOR SIGNAL ASSIGNMENT

SIGNAL NAME	I/O PORT BIT	FUNCTION
DIRT	0	STICK UP
DIR2	1	STICK DOWN
5 7 5 7		
D1R3	2	STICK LEFT
DIR4	3	STICK RIGHT
		not used
BUTTON	7	PUSH BUTTON
5 v		5 VOLT POWER
READ STROBE		ADDRESS BIT 8 OR 9*
GND		POWER GROUND
	DIRT DIRZ DIR3 DIR4 BUTTON 5v READ STROBE	DIRT 0 DIR2 1 DIR3 2 DIR4 3 7 5v READ STROBE

*When Address Bit 8 is high, the READ strobe to the left joystick is driven low. When address Bit 9 is high, the READ strobe to the right joystick is driven low.

2.4.5 AC Adapter Power Plug

The AC Adapter provided with the TS 2068 provides unregulated DC to the unit as described in Section 2.1.1 Mechanical details of the plug which mates to the TS 2068 are shown below:

2.4.6 Composite Monitor Output

The MONITOR output on the rear of the TS2068 provides a 1 V p-p (\pm 0%) composite color video signal output to an RCA phono jack which is mated by a standard phono plug into a 75 ohm coax cable. See Section 2.1.11.1.

The TV output on the rear of the TS2068 provides a modulated color video signal on VHF Channel 2 or Channel 3 as selected by the channel select switch on the bottom of the unit. Connection to the RCA phono jack output should be via a standard phono plug and 75 ohm coax cable. See Section 2.1.11.2.

Channel frequencies provided are

Channel 2 55, 250 +/- 100 KHz Channel 3 61, 250 +/- 100 KHz

Output levels are less than 3 milliwatts as limited by the Federal Communications Commission.

2.4.8 Keyboard Interface - J9 Connector

Located on the PCB inside the TS 2068 is a 14-pin single-in-line flex cable connector (AMP TRIO-MATE P/N 1-520315-4 or equivalent). Signals are as listed below:

PIN	SIGNAL
0	GND
1	КВО
2	KBl
3	KB2
4	КВ3
5	КВ4
6	CR6/All
7	CR7/A10
8	CR8/A9
9	CR9/A12
10	CR10/A13B
11	CR11/A8
12	CRI 2/A14B
13	CR13/A15B

Any modification to or replacement of the keyboard supplied must consider the following:

- (1) Contact resistance less than 200 ohns.
- (2) Bounce less than 10 ms.
- (3) Capacitance per line less than 20 pF (0 or 1 key depressed); less than 40 pF (nore than 1 key depressed).

SYSTEM SOFTWARE GUIDE 3. 0

3.1 Identi fi er

Location 13 (13H) of the Home Bank ROM is used to identify the revision level of the System Software. The initial version is identified by this location having a value of 255 (FFH). subsequent versions will decrement this value by 1, e.g., the first revision would be identified by a value of 254 (FEH). This identifier should be used to conditionally apply patches or execute "work-arounds" identified as necessary with a particular version of the System Software.

3. 2 **ROM Organization and Services**

Home ROM 3. 2. 1

3. 2. 1. 1 Fixed Entry Points

Home ROM Location 0 is the entry to the system initialization code upon power-up (Ref. Figure Locations 8 through 48 (8H through 30H) are the Z80 RESTART entry points for the following functions:

RESTART	FUNCTION
8	ERROR · Error exit from BASIC (Address on Stack points to Error Number)
15	WRCH - Write Character (Code in A) to Current Output Channel as established by SELECT (Address of output routine pointed to by System Variable CURCHL). (See Section 4.0).
24	IGN SP - Return in A the current significant character in the Program Line (Address in System Variable CH ADD) skipping over spaces and - control characters except End-of-Line (ODH=ENTER)

NXT_IS - Like IGN SP but returns in A the Next Significant Character.

40 CALCTR - Entry to Calculator Routines .

COPYUP - Make room for BC Bytes of temporary workspace just before address in System Variable STKBOT by copying up memory between there and the address in STKEND, adjusting affected pointers. Returns DE=1st Byte of Space; HL=Last.

Location 56 (38H) is the entry to service the hardware generated interruption which occurs approximately every 1/60 of a second (16.67 ms). Z80 Int. Mbde 1 is used. This interruption is used to scan the keyboard (call to routine UPD K - see Section 4.1.1). It is also used to update the Frame Counter (3 bytes pointed to by the System Variable FRAMES) used by the RANDOMIZE instruction.

Location 102 (66H) is the entry point for the ${\rm NMI}$ interruption, but this interruption is not used in the TS2068 design. (See Section 2.1.3.8 ${\rm NMI}$ Interruption.)

3.2.1.2 BASIC AROS Support

BASIC Application Cartridges are supported by special code in the Home ROM A program line is copied from the cartridge to a buffer in the Home RAM (ARSBUF) and is then executed from there by the BASIC Interpreter. When a READ command is executed, the line containing the appropriate DATA statement is also copied from the cartridge to the RAM The cartridge memory is enabled only fur search and copy operations for both program lines and DATA statements, and when executing a USR function, otherwise the entire Home Bank is enabled while executing in the BASIC Interpreter. There is no support for User-Defined **Functions** whi ch insert expanded definition parameters directly into the program and then require search of the program area to find these parameters whenever a function is invoked.

See Section 5.1, Cartridge Software/Hardware, for additional details on BASIC AROS.

3. 2. 1. 3 General

The balance of the Home ROM contains the BASIC Interpreter and standard I/O routines with the exception of the cassette I/O which is in the Extension ROM — The bit map table for the standard character set is located at the end of the Home ROM from location 15616 to '16383 (3DOOH to 3FFFH). — The address of this table minus 256 (100H) is contained in the System Variable CHARS (=3COOH).

The Home ROM routines accessible via the Function Dispatcher are described in Table 3.3.4-2. See Appendix A for the ROM Maps giving the ROM addresses of these routines.

3.2.2 Extension ROM

3. 2. 2. 1 Fixed Entry Points

Extension ROM Location 0 contains code to pass control to the initialization code in the Home ROM (Figure 1.1-4).

ROM Location 56 Extension (38H)is the interruption fielder. Control is passed to the System RAM code (See Section 3.3.3) to bank the Hone Bank and call interruption service routines after which the state of the machine is restored and control returns to the interrupted process. 3. 2. 2-1 shows the Extension ROM Interruption Fielder code.

3. 2. 2. 2 General

The balance of the Extension ROM contains the following major components:

- Final Phase of System Initialization (See Figure 1.1-4)
- Cassette tape I/O (see Section 4.2)
- Change Video Mode Service
- OS RAM routines including the Function Dispatcher (copied to RAM at System Initialization) (see Section 3.3.3)
- · Function Dispatcher Jump Table

FIGURE 3.2.2-1

Extension ROM Interruption Fielder

LOCAT ION	OBJECT CODE	SOURCE	E CODE	COMMENTS
0038	F5	PUSH	AF	Save AF
0039	F3	DI		Disable Ints.
003A	3AC25C	LD	A, (VIDMOD)	Test Vidnod
003D	A7	AND	A	
003E	00	NOP		
003F	2804	JR	Z, CHK3	Vi dmod=0
0041	Fl	POP	AF	Restore AF
0042	C36EFA	JP	INT7	Chunk 7 if Vidnod not 0
0045	Fl CHK	3 POP	AF	Restore AF
0046	C3AE62	JP	INT3	Chunk 3 if $Vidnod = 0$

3. 2. 2. 3 Video Mode Change Service

The routine CHNG VID takes as input a single byte in Register3 which designates the desired video mode as shown in Table 3.2.2-1. non-zero values involve access to the second display file located at 6000H-7AFFH. mode change requires remapping of the RAM (see Figure 1.1-3), the necessary relocation (BASIC program machine stack. OS RAM code. UDG area. etc.) and modifications (system variables, RAM code internal addresses, stack pointer, etc.) The desired video are done by this service. mode is written to Port OFFH, Bits 0-5, and the System Variable VIDMDD (5CC2H) is updated. The second display file is cleared to zeros on initial access (for Dual Screen Mode and High Resolution Graphics Mode, this results in a black screen since 0 yields attributes of black ink on black paper). If there is not enough free memory to do the necessary remapping, Error 4, Out of Memory is given.

Access to this service via the Function Dispatcher cannot be made consistently for various reasons. An Interface Routine is given in Section 3.2.2.4, to be executed from the Home RAM, which provides access to the Video Mode Change Service as well as other Extension ROM routines.

See Sections 4.1.2 and 5.2 for discussion of video screen support software. See Section 6.4 for details on known problems and corrections related to the Video Mode Change Service.

TABLE 3.2.2-1

INPUT TO VIDEO MODE CHANGE SERVICE

VALUE IN A	VI DEO <u>MODE</u>	DESCRIPTION
0	Normal	Primary Display File Only(Close 2nd Display File if Open)
128 (80H)	Dual Screen	Two Display Files Available. Primary Display File Active at Screen.
1	Dual Screen	Two Display Files Available. Second Display File Active at Screen
2	High Resolution Graphics	Primary Display File contains data for 256X192 pixels. Second Display File contains 6144 Attribute Bytes, each one controlling 8X1 pixels. NOTE 1.
	64-Column Ink <u>Paper</u>	The two display files are combined to provide a 64 column X 24 line screen. Even columns
6	Black White	are derived from data in the Primary Display File and odd
14 (OEH)	Blue Yellow	columns from the 2nd Display File. Bits 3-5 of the mode select the ink color which determines the
22 (16H)	Red Cyan	complementary paper color. The Flash and Bright Attributes are fixed at 0; the Border is
30 (1EH)	Magenta Green	fixed at the paper color. NOTE 1.
38 (26H)	Green Magenta	
46 (2EH)	Cyan Red	
54 (36H)	Yellow Blue	
62 (3EH)	White Black	

NOTE 1: The areas of memory normally used for Attribute Bytes are not accessed by the video hardware in this mode.

3. 2. 2. 4 Extension ROM Interface Routine

The Extension ROM routines W TAPE (Write from RAM to Tape), R-TAPE (Read from Tape to RAM) (see Section 4.2) and CHNG VID (see Section 3.2.2.2) may be of interest to the machine code Because of a conflict with the use programmer. of the IX Register, the tape routines cannot be successfully accessed via the Because the Change Video Mode Dispatcher. Service may involve relocating the OS RAM routines (including the Function Dispatcher), it also cannot be and for other reasons, accessed using the consistently **Function** Figure 3.2.2-2 gives a sample Di spatcher. routine, to be executed from the Hone RAM which can be used to bank switch to the Extension ROM and call directly to the desired Appendix A contains an Extension ROM Map giving the addresses of these and other routines.

FIGURE 3. 2. 2-2

EXTENSION ROM INTERFACE ROUTINE

	=00FC =0068 =0E8E =5CC2	1 : 2 R_1APE 3 W_TAPE 4 CHNG_VI 5 VI DMOD 6 ;	I D	EQU 00FCH EQU 0068H EQU 0E8EH EQU 5CC2H	; EXTENSION ROM INTERFACE ROUTINE ; READ TAPE ROUTINE ; WRITE TAPE ROUTINE ; CHANGE VIDEO MODE ROUTINE ; VIDEO MODE SYSTEM VARIABLE
0000° 0003' 0006'		READTP	LO CALL JR	HL, R_TAPE I FRTN EXI T	; CALL READTP WITH REGISTERS SET ; UP FOR R_TAPE ROUTINE ; ADDRESS TO HL ; ENABLE EXT. /EXECUTE QTN ; RESTORE HOME BANK AND RETURN
	14 15 10	; ; ;	0.1		; CALL WRITETP WITH REGISTERS SET ; UP FOR W_TAPE ROUTINE
0008' 000B' 000E'	21 0068 18 cc 0020' 19 18 0F 20	WRITTP	LO Call Jr	HL,W_TAPE If RIN EXIT	; ADDRESS TO HL
	21 22 23 24	t t			; CALL CHGVID WITH DESIRED VIDEO ; MODE IN A
0010' 1313' 0014'	21 OE8E 25 F5 26 CD 0020' 27	CHGVID	LD PUSH CALL	HL, CHNG_VID AF IFQTN	; ADDRESS TO HL ; SAVE VIDEO MODE
	28 29 3 (3 1 3 2 3 3 3 3				COMPENSATE FOR 'BUG' IN CHNG_VID RTN. WHICH SETS VIDMDD=0 INSTEAD OF 80 WHEN BOTH DISPLAY FILES ARE OPEN
0017' 0018' 00111' 001C' 001F' 0022' 0024' 0026' 0028' 0028'	F1 36 FE 80 37 20 03 38 32 5CC2 39 3A 002C 40 03 F4 C1 08 FF 42 CB 9F 43 03 FF 44 FB 45 C9 46	EXIT	POP CP JR LO LO OUT IN RES OUT EI RET	AF 80H NZ,EXIT (VIDMOD),A A, (HSSAVE) (OF4H),A A, (OFFH) 7,A (OFFH),A	; TEST VIDEO MODE ; TEST IF 80 ; SET VIDMOD=80H ; GET PREV. HOR. SEL. ; RESTORE ; READ PORT FF ; TURN OFF RCM SEL.
0020	47 00 48 49	: HSSAVE :	DEFB	0	; SAVE HOR. SEL. (PORT OF4H)
0020' 00ZE' 002F' 0031' 0033' 0035' 0037' 003A' 003C' 003E'	F3 53 F5 54 D8 FF 55 CB FF 56 03 FF 57 D8 F4 58 32 002C 59 3E 01 60 03 F4 61 F1 62 E9 64	IFRTN	PUSH IN SET OUT IN LD LD OUT POP JP	AF A, (OFFH) 7, A (OFFH), A A, (OF4H) (HSSAVE), A A, 1 (OF4H), A AF (HL)	; MASK INTERRUPTIONS ; PRESERVE REG. A ; EXT. ROM SELECT BIT ; SEL. EXT. ROM ; HORIZONTAL SELECT FCR DOCK/EXT ; SAVE : SELECT CHUNK 0 IN EXT. ROM ; RESTORE REG. A EXECUTE TARGET ROUTINE AND : RETURN TO CALLER CF IFRTN

3.3 RAM Organization and Services

3. 3. 1 System Variables

RAM beginning at 23552 (5000H) is dedicated to the BASIC System Variables as defined in Appendix D of the TS 2068 User Manual and in Appendix B of this document. The area from the end of the defined variables (STRMNM - 23755 (5CCB)) to 24297 (5EE9H) is reserved for expansion of the System Variables, but is not used by the Operating System in the current TS 2068.

3.3.2 System Configuration Table

The area from 24298 (5EEAH) to 24575 (5FFFH) is reserved for the System Configuration Table (SYSCON). This table is built at system initialization time and is comprised of an 8 byte entry for AROS, a 4 byte entry for LROS, followed by eleven 24-byte entries for proposed expansion banks and an End-of-Table marker. In the original TS 2068 the actual usage of this table is limited to the 12 bytes for software cartridge identification (see Section 5.1 for details of the LROS and AROS Overhead Bytes).

3.3.3 Machine Stack

The TS 2068 reserves 512 (200H) bytes of RAM for the Machine Stack. The Machine Stack pointer is initialized to a value of 6200H (value also in System Variable MSTBOT); the pointer is decremented as items are pushed onto the stack (the pointer may also be modified directly by software). While the area reserved for the stack extends to 6000H, there is no actual check made to enforce this limit.

Note that the Machine Stack is located in the same memory area as the second display file. The CHNG VID routine relocates the stack to the memory area from OF7COH to OF8BFH, and modifies the Stack Pointer and MSTBOT (OF8COH), as well as other affected system variables, when initializing the second display file. (See Section 3.2.2.3.)

3. 3. 4 OS RAM Routines

The code for the following Operating System functions is copied from the Extension ROM to Chunk 3 of the RAM at System initialization time. Since this is in the same memory area as the second display file, this code must be relocated, along with the machine stack, if the second display file is to be used. The CHNG VID routine does the necessary relocation and modifications. (Section 3.2.2.3.)

Because this code is not in a fixed location, access to the OS RAM routines is conditional on the current video mode. The standard technique employed is to test the value in the System Variable VIDMDD at location 23746 (5CC2H). A zero indicates that the second display file is not in use and that the OS RAM routines are therefore in Chunk 3; any non-zero value indicates that the routines are in Chunk 7.

YOTE: This design implies that Chunks 2, 3 and 7 are always enabled in the Hone Bank RAM whenever the System ROM and/or RAM routines are being used.

The OS RAM routines are contained in Module "Dispatch" which is included in Appendix A.

3. 3. 4. 1 RAM Interruption Handler

Chunk 3 Entry: 62AEH

Chunk 7 Entry: FA6EH

The user must enter with bank status and Z80 registers intact, with address from point of interruption on the stack.

The RAM interruption handler saves state, including memory selection, enables the Home Bank, updates the Frame Counter, calls the keyboard scan routine in the Home ROM, restores state, and returns to the interrupted process.

The RAM Interruption handler is used whenever the interruption occurs while the Extension ROM is enabled, See Figure 3.2.2-1, Extension ROM Interruption Fielder. This same technique can he used for interruption processing in another bank, e.g. if an LROS wanted to use the standard system ROM keyboard scanning routines.

3. 3. 4. 2 RAM Service Routines

Table 3.3.4-1 lists the RAM service routines which are designed to facilitate communication between memory banks. Those with Service Codes are accessible via the Function Dispatcher.

TABLE 3.3.4-1
OS RAM SERVICE ROUTINES

LABEL	SERVICE COOE	LOCA	ATION	DESCRIPTION
	(Decimal)	Н.	Н.	
GET_ WORD	-	6316	FAD6	Returns in HL the word from the address in HL in the bank specified in B.
PUT_ WORD		6336	FAFB	Writes the word in DE to the address in HL in the bank specified in B.
GET STATUS	14	6405	FBC5	Returns current memory selection (Horizontal Select byte - low active) in C for the bank specified in B. Preserves Bank # in B for Home, Ext. or Dock.
GET_ CHUNK		644D	FCOD	Returns a single byte mask in A with all bits 0 except the one corresponding to the chunk for the address in HL.
GET NUMBER	15	645E	FC1E	Returns in Reg. A the bank number currently controlling the address in HL.
BANK ENAB	LE -	6499	FC59	Enables the memory selected (Horizontal Select byte - low active) in the specified bank. (Bank # in B; Mem Sel.in ()
GOTO BAN	K -	6572	F032	Transfers control to the specified address after enabling the memory selected in the specified bank. Parameters passed on stack by pushing target address, then Bank #/Mem Select prior to calling GOTO BANK. (Return address is discarded).
CALL BAN	K -	65D0	FD90	Like GOTO BANK except saves current hankstatus, calls target address, and restores status prior to returning to user. Two additional parameters are passed on stack prior to doing call to CALL BANK. These are PRM OUT (16-bits) following by PRM IN (16 bits) as described for the Function Dispatcher.

TABLE 3.3.4-1

OS RAM SERVICE ROUTINES (continued)

LABEL	SERVICE CODE (Decimal)	LOCAT	I ON	DESCRIPTION
XFER	BYTES -	6722	FEE2	Copies n byte(s) from specified source to specified destination in either ascending or descending order. Source and destination can be in the same or different banks and can be in shadowing chunks, but neither source nor destination can pass a "chunk" (8K) boundary since only the chunks containing the starting source and destination addresses are explicitly enabled. Parameters passed on stack by pushing: Source Bank/Dest. Bank Source Address Dest. Address Length O/Direction: (0=Asscending
				- l =Descendi ng)

NOTE: See Appendix A for listing of these routines. See Section 6.0 for known corrections to the routines.

3.3.4.3 Function Dispatcher

Chunk 3 Entry: 6200H

Chunk 7 Entry: F9C0H

Function Dispatcher provides, a common interface to a number of system routines via a Service Code and Jump Flag parameter passed on Table 3.3.4-2 lists the the machine stack. routines in Service Code order. Codes for routines that are known to not be successfully accessible via the Function Dispatcher have been deleted (marked Reserved). However, there is no guarantee that those on the list can be accessed without problems. **Some ROM routines** require data in a particular format, e.g. BASIC floating point number(s), both standard and special integer format, on the Calculator Stack which is located between (STKBOT) and (STKEND) (see Appendix C of the TS 2068 User Manual). An effort has been made to include information on register usage and functionality. of the ROM routines are so tightly tied to the BASIC Interpreter that they would require analysis which is beyond the scope of this These have been flagged with an document. Asterisk. but included in the list documentation purposes only. Most of the routines which are directly implementing a BASIC command or function have two different action sequences based on the INTPT Flag (Bit 7 of FLAGS) which distinguishes syntax checking (Flag=0) from actual execution (Flag=1).

In order to use the Function Dispatcher, first set up any memory and stack (both machine and/or calculator) locations as if invoking the desired service directly. Then push the parameter(s) for the Dispatcher on the machine stack in the order outlined below. Finally, set up the registers as if invoking the desired service directly and call the Dispatcher based on its current location (Chunk 3 if VIDMDD=0 or Chunk 7 if VIDMDD has a non-zero value).

1. **PRMOUT** 16 bits - Number of bytes of parameter data being passed on the stack to the specified Service (number of stack "pushes" * 2). Zero if no parameters being passed. E.g., to pass 4 bytes:

LD HL, 4 PUSH HL

This parameter is passed to the Dispatcher only if the Jump Flag (SVC CODE) Bit 15) is not set. NOTE: This parameter refers to machine stack entries only, not to the Calculator Stack.

2. PRM IN 16 bits - Number of bytes of parameter data to be passed back from the specified Service (number of stack "pushes" * 2). Zero if no parameters to be passed back.

This parameter is passed to the Dispatcher only if the Jump Flag (SVC CODE Bit 15) is not set. NOTE: This parameter-refers to machine stack entries only, not to the Calculator Stack.

3. SVC_CODE 16 bits - Bits 0-14 identify the Service to be invoked. Bit 15 (Jump Flag) is set if no return is desired (jump to Service rather than call). Bit 15 is zero if return is desired. E.g, to call K SCAN using Service Code 136:

LD HL, 136 or LD HL,88H PUSH HL PUSH HL

Addendum To TS 2068 Function Dispatcher Services: On page 84, COLOR and HIFLSH (service codes 85 and 86) cannot always be accessed through the Function Dispatcher, due to resetting of the carry flag by the FD. COLOR may be accessed by setting the registers as described in the manual, and then coding CALL #23DE. HIFLSH can be accessed similarly by coding CALL #2410.

TABLE 3.3.4-2
TS 2068 FUNCTION DISPATCHER SERVICES

SERVICE	SERVICE CODE	DESCRIPTION
	1 · 13 (1-0DH)	Reserved
GET STATUS	14 (OEH)	Returns Memory Selection (Low Active) in C for Bank # in B
GET NUMBER	15 (OFH)	Returns Bank # in A for Address in HL
	16-24 (10-18H)	Reserved
UPD K	25 (19H)	Process Keyboard Input (See Section 4.1 .1)
PARP	26 (1AH)	Generates DE+1 Cycles of a Tone having the Period 8N+236 to 8N+246 T-States. HL=N. (See 4.4)
ВЕЕР	27 (1BH)	BEEP Command - processes parameters on Calculator Stack. Exits via PARP. (See 4.4)
K_ DUMP	28 (1CH)	COPY Command. Dumps Primary Display File to Printer. (See 4.1.3)
SENDTV	29 (1DH)	Char. Output to Screen/Printer. Character Code in A. (See 4.1.2)
SETAT	30 (1EH)	Set Print Position to value in BC. B=Line No. (0-23); C=Column No. (0-31)
ATTBYT	31 (1FH)	Set Attribute Byte for Display File Adrs. in HL using ATTR_T, MASK_T and P-FLAG.
R ATTS	32 (20H)	Permanent Attribute Info. to Temporary Attribute Variables
CLLHS	33 (21H)	Cl ear Lower Screen (Primary Display File)
CLS	34 (22Н)	Clear Entire Screen(Primary Display File)
DUMPPR	35 (23H)	Print/Clear Print Buffer. (See 4.1.3)

TABLE 3.3.4-2 TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE	CODE	DESCRIPTION
PRSCAN	36	(24H)	Send Can'332 bytes) toPrinter. Pixel Data Address in HL Number of Scans remaining in B (=1-8). (See 4.1.3)
DESLUG	37	(25H)	Remove Number Slugs from Edit Line Buffer (Address in IL)
K NEW	38	(26H)	NEW command. See Fig. 1.1-4
INIT	39	(27Н)	Initialize: DE=Maximum RAM Address. A=0 for Power-On; = -1 (FFH) for NEW. (See Fig.1.1-4)
INCH	40	(28H)	Input Character to A from currently Selected Channel. Returns NC if no input.
SELECT	41	(29H)	Select Channel (Stream) · # in A. (See 4.1)
INSERT	42	(2AH)	Insert BC Bytes before byte whose address is in HL. Copies up all from HL to (STKEND) and updates affected system variables. Returns BC=0; DE=adrs. of last byte of inserted space; HL=adrs. of byte before first.
RESET	43	(2BH)	Reset Calculator Stack. Sets (STKEND) = (STKBOT) and (MEM) = MEMBOT (5C92H).
CLOSE	44	(2CH)	CLOSE # Command. Channel # on Calculator Stack.
CLCHAN	45	(2DH)	Close Channel. BC=Value from STRMS (Index into CHANS).
OPEN	46	(2EH)	OPEN # Command. Channel # an4 Device Spec. on Calculator Stack
OPCHAN	47	(2FH)	Open Channel. Device Spec. on Calculator Stack. DE=pointer into STRMS based on Ch.#.
			(See 4.1 for more info. on OPEN and CLOSE)

TABLE 3.3.4-2
TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE	CODE	DESCRIPTION
CAT	48	(30H)	CAT Command (Not Applicable)
ERASE	49	(31H)	ERASE Command (Not Applicable)
FORMAT	50	(32H)	FORMAT Command (Not Applicable)
MOVE	51	(33H)	MDVE Command (Not Applicable)
FLASHA	52	(34Н)	Flash Char.in A to Screen. (Calls SENDTV; assumes Lower Screen selected. Used to Flash Cursor.)
FIND_L	53	(35Н)	Find BASIC Program Line with the number in HL. If Line found, returns Z and Address of Line in HL, else returns NZ and HL contains either address of line with next larger line number or points to the Variables area if there is no larger line number. Requested Line No. returned in BC and Address of Preceding Line in DE (DE=HL if no preceding line).
SUBL IN	54 (36H)		Finds either the D'th statement (D=Statement #; E=0) or 1st statement whose keyword token matches E (D=0), in a line pointed to by HL. If the D'th statement is found, returns Z and HL and (CH ADD) both point to 1 byte before-statement. (If line contains exactly D-1 statements, then the next line counts as the D'th.). If match on E is found, then returns NZ, NC and both HL and (CH ADD) point to keyword. D is decremented by the number of statements looked at (e.g. D= -2 if two statements). If no match on E then returns NZ, C with both HL and (CH ADD) pointing to End-of-Line byte (ODH).

TABLE 3.3.4-2

TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
RECLEN	55 (3/H)	Returns in BC the length of the record pointed to by HL. Sets DE to HL+BC. The record can be a program line, or a string or numeric variable or array.
DELREC	56 (38H)	Delete record pointed to by HL having length BC from Program or Variables memory. Updates affected system variables.
PUT BC	57 (39Н)	Converts number in BC from binary to ASCII and outputs to currently selected channel, If BC less than 0, outputs a 0.
SYNTAX	58 (3AH)	Check syntax of command or program line in Edit Line Buffer (E LINE). ERR NR= -1 if no errors, otherwisecontains Error Number-1.
EXCUTE	59 (3BH)	Execute command(s) from Edit Line buffer.
FOR	60 (3CH)	FOR command. *
STOP	61 (3DH)	STOP command. Does RESTART 8 with Error No. 9.
NEXT	62 (3EH)	NEXT command. *
READ	63 (3FH)	READ connand. *
DATA	64 (40H)	DATA statement. *
RESTBC	65 (41H)	RESTORE command - Line No. in BC
RAND	66 (42H)	RANDomize command. Sets seed for Random Number Generator based on Parameter on Calculator Stack. If parameter is non-zero, value is loaded to SEED; if zero, value in FRAMES is loaded to SEED.

TABLE 3.3.3-2
TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
CON' T	67 (43H)	CONT command. Loads values from OLDPPC and OSPPC to NEWPPC and NSPPC and returns. Inside the BASIC Interpreter, this results in executing from Line No. in NEWPPC, Statement No. in NSPPC.
JUMP	68 (44H)	Jump to Line - Loads Line Number from Calculator Stack to NEWPPC and sets NSPPC to 0 and returns.
FIX_ Ul	69 (45H)	Converts Floating Point number on Calculator Stack to a single byte unsigned binary value in A (uses FP2A). Does RESTART 8 for Error B if number out of range.
FIX U	70 (46H)	Converts Floating Point number on Calculator Stack to a 2-byte unsigned binary value in BC (uses FP2BC). Error B if number out of range.
CLEAR	71 (47H)	CLEAR command. Processes parameter on Calculator Stack to value in BC for CLR BC.
CLR BC	72 (48H)	Value in BC is new RAMTOP. Deletes Variables, clears screen, and Calculator Stack, etc.
GO SUB	73 (49Н)	GO SUB command. Inserts a 3-byte GO-SUB Block into the machine stack above the 2 most recent entries. The Block consists of current Line No. (2 bytes) and Statement No. (1 byte) to be used when RETURN is executed. Then calls JUMP to process GO SUB parameter and returns. At return to caller, machine stack consists of top of stack at point GO SUB was called, followed by 3-byte entry (Line No. MSB/Line No. LSB/Statement No.).

TABLE 3.3.3-Z TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVI	CE CODE	DESCRIPTION
CHK SZ	74	(4АН)	Checks if room for BC + 80 (50H) bytes between (STKEND) and (RAMTOP). Addition of 80 bytes is "left-over" from Spectrum to guarantee minimum machine stack where the stack was at the top of RAM Error 4 if not enough room
RETURN	75	(4BH)	RETURN command. Retrieves most recent GO SUB Block from Machine Stack (SP+4), loads data to NEWPPC and NSPPC and returns. Error 7 if MSB Line No. =3EH (End of Stack Marker).
PAUSE	76	(4СН)	PAUSE command. Processes parameter on Calculator Stack to BC then waits BC frames or until key is depressed. (Uses HALT instruction, so interruptions must be enabled.)
BREAK?	77	(4DH)	Reads BREAK key. Returns NC if it is pressed and ON ERROR is not active.
DEF	78	(4EH)	Define Function.*
K LPR	79	(4FH)	LPRINT - Selects Channel 3 and processes items in LPRINT statement for output via WRCH.
K PRIN	80	(50Н)	PRINT - Selects Channel 2 and processes items in PRINT statement for output via WRCH (same code used for K_LPR).
P_SEQ	81	(51Н)	Code used by K LPR and K PRIN to process output-data and controls in BASIC statement (address in CH ADD).
INPUT	82	(52Н)	INPUT command. Selects Channel 1 and processes I/O for Keyboard/Lower Screen using a buffer at (WORKSP) for input. *

TABLE 3.3.3-Z

TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
I_SEQ	83 (53H)	Code used by INPUT to process input items and controls in BASIC statement (address in CH ADD).
NOTKB?	84 (54H)	Returns Z if current channel is Keyboard/Lower Screen (device specification="K").
COLOR	8 5 (55H)	Adjusts system variables ATTR T, MASK T and P FLAG for color code in D (0-9). Enter with C set to set Ink or NC set to set Paper. Error K if D is invalid.
HIFLSH	86 (56H)	Adjusts system variables (ATTR T and MASK T) for Flash/Bright code in D (0, 1 or 8) else Error K. Enter with C for Flash or NC for Bright.
SCRMBL	87 (57H)	Returns in HL the primary display file address for the pixel with coordinates in BC (B=Y; C=X). Returns in A the bit no (0-7) where 0=lefthand or most significant bit. Error B if Y is greater than 175.
PLOT	88 (58H)	PLOT command. Processes X/Y parameters on the Calculator Stack to BC for plotting of pixel via PLOTBC.
PLOTBC	89 (59H)	Deals with pixel for coordinates in BC (B=Y; C=X). Processes using P FLAG for Inverse and Over attributes. Updates Attribute File and sets COORDS=BC.
GET_ XY	90 (5AH)	Converts a pair of numbers from the Calculator Stack to 2 single byte numbers. Top number goes to B and second to C. D=sign of B and E=sign of C (+l or -1). Used by PLOT and other routines.

TABLE 3.3.3-2
TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
CIRCLE	91 (5BH)	CIRCLE command. Calculates successive plot positions from the parameters in the BASIC statement. *
DRAW	92 (5CH)	DRAW command. Calculates successive plot positions from the parameters in the BASIC statement. *
DRAW L	93 (5DH)	Plots a straight line from current position (COORDS) based on parameters from Calculator Stack (X, Y). *
EXPRN	94 (5EH)	Evaluates expression in BASIC program line (CH ADD), putting value on Calculator Stack. *
F SCRN	95 (5FH)	SCREEN\$ function. Matches screen line/col. position (parameters on Calculator Stack) against standard ASCII character set. Returns BC=0 if no find. BC=1 and DE points to Char. Code byte if match found.
F ATTR	96 (60H)	ATTR function. Returns attribute byte value controlling screen pixel position based on parameters on Calculator Stack (X,Y).
RND	97 (61H)	RND function. Uses value in SEED to generate a pseudo-random number which is placed on the Calculator Stack (Floating Point number).
F PI	98 (62H)	PI function. Places value of PI on Calculator Stack.

TABLE 3.3.3-2

TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
F_INKY	99 (63H)	INKEYS function. Scans keyboard and puts character code byte in (WORKSP) if key detected. In any case, pushes Regs. AEDCB onto Calculator Stack - BC=0 if no input; =1 if char. code stored; DE=address of char. code byte.
FIND N	100 (64H)	Find Variable. Searches Variables area for match against identifier pointed to by CH ADD. Adjusts bit NO of FLAGS (Bit 6) for type (l=numeric; 0=string). Also used to find formal parameters for User Defined Functions. *
PSHSTR	101 (65H)	Push String - Clears bit NO of FLAGS and pushes Regs. AEDCB onto Calculator Stack adjusting (STKNXT) upwards. DE contains address of string; BC contains length.
PAEDCB	102 (66H)	Same code as for PSHSTR but preserves state of bit NO of FLAGS (Bit 6).
LET	103 (67H)	LET command. Processes existing or creates new variables. *
POPSTR	104 (68H)	Pop String - Pops end of Calculator Stack (STKNXT)-1 through (STKNXT)-5) to Regs. BCDEA, adjusting (STKNXT) downwards.
DIM	105 (69H)	DIM statement. Creates or initializes numeric or string arrays. *
STKUSN	106 (6AH)	Stack Unsigned Number - inputs a floating point number onto the Calculator Stack from a series of ASCII characters addressed by (CH ADD). The first character is already in Reg. A (either decimal point, binary token or digit).

TABLE 3.3.3-2

TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
STK A	107 (6BH)	l-byte unsigned integer in A to top of Calculator Stack (binary to floating point). Loads 0 to B and A to C, then executes STK BC.
STK BC	108 (6CH)	2-byte unsigned integer in BC to top of Calculator Stack (binary to floating point).
ININT	109 (6DH)	Converts a series of ASCII digits pointed to by (CH ADD) into an unsigned floating point integer on the Calculator Stack. First character is in A on entry. Terminates when non-digit found.
FP2BC	110 (6EH)	Pops top of Calculator Stack (floating point number) and puts in BC, rounded to nearest integer. Returns NZ if value is negative. Returns C if number exceeded maximum 2-byte value (65535). Range: -65535 to +65535.
FP2A	111 (6FH)	Pops top of Calculator Stack (floating point number) and puts in A, rounded to nearest integer. Returns NZ if value is negative. Returns C if number exceeded maximum l-byte value (255). Range: -255 to +255.
OUTPUT	112 (70Н)	outputs number on top of Calculator Stack to currently selected channel via WRCH. (Converts from floating point to ASCII.)

SUB	113	(71H)	Subtract				
			nunbers	(HL)	mi nus	(DE).	(DE)
			assumed	to be	(HL) +	5,	

TABLE 3.3.3-2
TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVI CE	SERVICE CODE	DESCRIPTION
ADD	114 (72H)	Add (HL) + (DE). See SUB.
MULT	115 (73H)	Integer multiply HL * DE. Returns C if overflow.
TIMES	116 (74H)	Floating Point Multiply (HL) * (DE).
DIVIDE Trunc	117 (75H) 118 (76H)	Floating Point Divide (HL)/(DE). Truncates a floating point number (HL) towards zero to an integer. Assumes (DE) = (HL) + 5.
FLOAT	119 (77H)	Converts number (HL) to floating point format. Assumes HL points to an integer in 5-byte format.
INTDIV	120 (78H)	Replaces top two numbers on Calculator Stack (X and Y) by X Mbd Y and the integer quotient INT (X/Y). Returns with DE and HL = Calc. Stack Pointers.
INT	121 (79H)	Replaces the top of the Calculator Stack by its integer part. Returns with HL = top of Calc. Stack and DE = next free space.
ЕХР	122 (7AH)	Replaces the top of the Calculator Stack, X, by EXP(X). Returns with DE and HL = Calc. Stack Pointers.
LN	123 (7BH)	Replaces the top of the Calculator Stack by its natrual logarithm Returns DE and HL = Calc. Stack Pointers.
ANGLE	124 (7CH)	Replaces the top of the Calculator Stack (X) by Y where Y is greater than or equal to -1 and less than or equal to $+1$ and the SIN X = SIN (PI/2 * Y).

TABLE 3.3.3-Z
TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
cos	125 (7DH)	Replaces the top of the Calculator Stack by its COSINE.
SIN	126 (7EH)	Replaces the top of the Calculator Stack by its SINE.
TAN	127 (7FH)	Replaces the top of the Calculator Stack by its TANGENT.
ATN	128 (80H)	Replaces the top of the Calculator Stack by its inverse TANGENT.
ASN	129 (81H)	Replaces the top of the Calculator Stack by its inverse SINE.
ACS	130 (82H)	Replaces the top of the Calculator Stack by its inverse COSINE.
ROOT	131 (83H)	Replaces the top of the Calculator Stack by its Square Root.
то тне	132 (84H)	Replaces the top two numbers on the Calculator Stack (X , Y) by $x^{**}y$.
RDCH	133 (85H)	Wait for character from currently selected channel (calls INCH). Returns character code in A. See 4.1.1.
SENDCH	134 (86H)	Write character whose code is in A to currently selected output channel. See 4.1.2.
WRCH	135 (87H)	See 3. 2. 1. 1, RESTART 16.
K- SCAN	136 (88H)	Keyboard Scan. See 4.1.1

TABLE 3.3.3-2

TS 2068 FUNCTION DISPATCHER SERVICES (continued)

SERVICE	SERVICE CODE	DESCRIPTION
P LFT	137 (89Н)	Backspace. Sets current column position back 1 for selected device. (System Variable updated is S POSN, SPOSNL, or P POSN for Screen, Lower Screen or Printer respectively.)
P_RT	138 (8AH)	Outputs a space to currently selected device.
P_ NL	139 (8BH)	End-of-Line. Sets current position to start of next line if screen, or outputs printer buffer if printer.
PUTMES	140 (8CH)	output message to currently selected device. DE points to base of message table which contains variable length ASCII coded messages. The first byte of the table and the last byte of each message must have the most significant bit set. Register A contains the message number, numbered from 0 upwards.
K_ CLS	141 (8DH)	CLS command. Executes both CLS and CLLHS.
SCRL	142 (8EH)	Scrolls entire screen (primary display file) up 1 line.
F_ PNT	143 (8FH)	POINT function. Processes X, Y parameters from Calculator Stack to BC. Returns unsigned integer value = 0 or 1 on Calculator Stack reflecting state of pixel at coordinates X/Y.
DRAWLN	144 (90H)	Same as DRAW L but enter with BC register containing coordinates, B=Y and C=X.
PUT_ LN	145 (91H)	Output Line Number as 4 digits, right aligned and space filled to currently selected output channel. HL points to MSB of Z-byte Line Number.

4.0 SYSTEM I/O GUIDE

4.1 I/O Channels

The TS 2068 software architecture supports up to 19 I/O Channels or "Streams', numbered from -3 through 15. Those numbered less than 0 are "hidden" or reserved for system use; Channels 0 through 15 are available for assignment via the OPEN # command which has the following format:

OPEN # n, s

where n is the Channel number (0-15) and s is the Device Specification, e.g. "K" (keyboard), "S" (screen) or "P" (printer).

Channels 0 through 3 are initialized at power-on or execution of a NEW command to support the standard system devices and character I/O functions as shown in Figure 4.1-1. Channels 4-15 are You can re-assign the standard I/O, e.g. considered "Closed". OPEN # 2, "P" will direct all PRINT and LIST commands to the 2040 Printer instead of the screen. You can also assign Channels 4-15 and then direct I/0 by including the Channel number (or a variable equated to the channel number) in the I/O statement, e.g. PRINT # Support for other than the standard system devices described above is not implemented in the original version of the TS 2068 and attempts to OPEN Channels or "Streams" using other than the standard device specifications ("K", "S" or "P") will result in an error message. One possibility for adding BASIC support for new devices is to intercept the I/O error on OPEN and other commands such as CAT and FORMAT via ON ERR and interpret the BASIC program line using your own machine code routines.

Channe Stream		Command/Function
□ 3	" K "	Keyboard/Lower Screen
RESERVED ———— -2	" s "	Main Screen
-1	" R "	RAM Write (not used)
	" K "	Output to Lower Screen
1	'' K ''	INPUT command
2	" s "	PRINT/LIST commands
3	"P"	LPRINT/LLIST commands

FIGURE 4.1-1

The Channel architecture is implemented by a number of tables located in both ROM and RAM

A. STRMS is a 38 byte table (2 bytes for each of the 19 channels) located in the System Variables area beginning at 23568 (5C10H). It is initialized at power-on or NEW to the following values:

LOCATION	VALUE			
5C10	0100	(Channel	-3)	
5c12		(Channel	-2)	(Copied from
5c14	0600	(Channel	-1)	SMINIT in
5C16	0100	(Channel	0)	- module EDIT
5C18	0100	(Channel	1)	of the Home
5Cl A	0600	(Channel	2)	ROM)
5C1C	1000	(Channel	3)_	1
5Cl E	0000	(Channel	4)	
•	•	•		
5C34	0000	(Channel	15)	

This table is accessed using ((Ch.# * 2) + 16H) as an index added to 5COOH. The 2-byte value in the table is an index into the CHANS area of memory which contains the addresses of the I/O routines for the selected channel. If the 2-byte value is zero, the Channel is closed. The STRMS table is modified via the OPEN # and CLOSE # commands. When a Channel is OPENed, the device specification is used to obtain the 2-byte value to be inserted. This value is taken from the table STRMINIT in module EDIT of the Home ROM When Channels O through 3 are CLOSEed, the values are restored to those used at power-on time. All others are cleared to zero.

B. CHANS The CHANS System Variable at 23631 (5C4FH) contains the address of a 21-byte table initialized at power-on or execution of a NEW command to support "stream" I/O to the four standard system devices ("K", "S", "R" and "P"). Each table entry is 5 bytes long and is indexed by the value obtained from the STRMS table added to (CHANS)-1. Each entry has the following format:

Output Routine Address 2 Bytes
Input Routine Address 2 Bytes
Device Specification 1 Byte

This table is copied from CHINIT in module EDIT of the Home ROM The last byte of the table contains an 80H which will immediately precede the first line of the BASIC Program (PROG).

Whenever an I/O operation is performed, the appropriate Channel is "selected", i.e. its number is used as an index into STRMS to obtain the offset into the CHANS table. This offset is added to

(CHANS)-1 and the resultant pointer is loaded into the System Variable CURCHL for use by the next character I/O operation (WRCH/RDCH). The device specification from CHANS is used to find and execute the initilization routine in SELTAB.

- C. SELTAB The Select Table is located in the EDIT module of the Home ROM and contains offsets to device dependent initialization routines for the standard devices "K", "S" and "P".
- D. SPEC T The Specification Table is located in the CHANS module of the Home ROM and contains offsets to device dependent OPEN routines for the standard devices "K", "S" and "P". It is accessed whenever an OPEN # is executed.
- E. CL TAB The Close Table is located in the CHANS module of the Home ROM and contains offsets to device dependent CLOSE routines for the standard system devices "K", "S" and "P". It is accessed whenever a CLOSE # is executed.

The following sections describe the standard system I/0 devices supported via Channel I/0.

4.1.1 Keyboard

The low-level routines supporting keyboard input executed every 1/60 of a second out of the Interruption Handler (Location 56 (38H)). The controlling routine is labelled UPD K. This routine calls K SCAN to determine if any key(s) are currently being depressed, controls the debouncing and repeat algorithms, calls K BASE to determine the Base Code, calls CHCODE to translate the Base Code based on Mode (e.g. "K", "G" or "E" Mode), and finally, stores the resultant keystroke code in LAST K and sets the flag Figure 4.1.1-1 illustrates the mode control variable and associated flags and Figure 4.1.1-2 contains flowcharts of the keyboard support routines.

The character input routine associated with Device Spec. "K" is labeled $IN\ K$. The entry address is obtained using the pointer in CURCHL when Channel 1 has been Selected and the Character I/O Input routines RDCH/INCH are executed. The IN K routine tests the KEYHIT flag to detect the presence of input from the keyboard. When the KEYHIT flag=1, the contents of LAST K are returned to the requestor.

FIGURE 4.1.1-1
TS 2068 MODE CONTROLS

System Variable	Location	Description
MODE	23617(5C41H)	Value 0 = "K" or "L" Mode 1 = "E" Mode 2 = "G" Mode
FLAGS	23611(5C3BH)	If MODE = 0 then:
		Bit 3 = 0 for "K" Mode = 1 for "L" Mode
FLAGS2	23658(5C6AH)	If in "L" Mode then:
		Bit 3 = 0 CAPS Lock Off = 1 CAPS Lock On

4.1.2 Video Screen

The TS 2068 system software supports I/O in the primary display file only. See Section 2.1.10 for the display file organization. The screen, which is 32 columns X 24 lines, is partitioned into two parts, the main or upper screen (22 lines1 and the lower screen (2 lines). The lower portion of the screen is used for output of system messages and to echo input from the keyboard of BASIC commands, BASIC program lines, or data. The lower screen expands as needed for multi-line input, scrolling the entire screen upwards. The variable DF SZ reflects the number of lines in the lower screen (default=2).

Character output to the screen is done using the Channel I/O described in Section 4.1 using device specification "K" for the lower screen and "S" for the upper screen. Each character is defined by an 8 X 8 group of pixels. The 8 bytes needed for each of the 133 characters supported by the TS 2068 are located as shown in Figure 4.1.2-1. Note that by constructing your own pixel data and placing (base address-loOH) into CHARS, you can define your own character set.

Associated with each character position is an Attribute Byte controlling the background (PAPER) color, the foreground (INK) color, the intensity (BRIGHT), and whether the position is constant or alternates between true and inverse video (FLASH). Two other "attributes", OVER and INVERSE, are implemented by software at the time the character(s) are placed into the display file.

FIGURE 4. 1. 2-1
TS 2068 STANDARD CHARACTER TABLES

Character Set	No. of Chars.	Char. Codes	Locati on
Standard	96	32-127	Hone ROM
		(20-7FH)	(3D00-3FFFH)
			(Address-100H
			in CHARS)
Std. Graphi cs	16	128- 143	Dynami cally
-		(80-8FH)	Generated by Software
			Suitwaie
User Defined	21	144-164	Home RAM
Graphi cs		(90- A4H)	(Address in
-			UDG)

The screen output routine, SENDTV, is in Module IO 1 of the Home ROM This routine is used for output to-both the screen (upper and lower) and the dot matrix printer. The following sequence illustrates the major operations involved in executing a PRINT "A" statement:

1. Channel 2 is Selected (normal assignment assumed)

loads CURCHL with pointer into CHANS area for Channel 2 (first 2 bytes are address of Output Routine - SENDIV).

clears printer and lower screen flags

sets ATTR T to values based on ATTR P (current "permnent" attribute values are transferred to the system variable used by the screen output routine). If the PRINT statement contained temporary attribute controls, they would override the settings established via Select.

- 2. The character code for "A" (65/41H) is placed in Register A and a RESTART 16 (10H) is executed (WRCH). This jumps to SENDCH in module EDIT of the Home ROM which oasses control to the SENDTV routine based on (CURCHL).
- 3. The registers are loaded from the System Variables with the current Row/Column position (S POSN) and Display File address (DF_CC) for the main screen.
- 4. The character code is determined to be from the standard character set so the registers are loaded with the address from CHARS and the offset to the pixel pattern for "A" is calculated using the character code X 8 (shift left 3 places).
- The first pixel row (8X1) from the character table is copied to the display file. The character table address is incremented by 1 and the display file address is incremented by 256 (100H). The next pixel row (8X1) is copied to the display file. This process is repeated until the 8 pixel rows have been copied. Masking of the data going into the display file is done based on the flags from P FLAG thus controlling the OVER and INVERSE attributes.
- 6. The attribute. byte controlling the character position just written is updated based on the value in ATTR_T and other flags.

7. The variables S POSN and DF CC are updated to reflect the nextscreen position and return is made from the WRCH operation.

In the above sequence, if the print position for the "A" had started a new line following the 22 lines of the main screen, the SCROLL? prompt would have been outputted to the lower screen and, assuming a positive response, the upper screen would be scrolled up 1 line, a blank line inserted at the bottom of the upper screen, and the "A" printed at the start of the new line.

Graphics I/O using pixel coordinates is supported in the primary display file by the PLOT, DRAW and CIRCLE commands. The Home ROM module GRAPHS contains the major routines which implement these commands. They are limited to the 22 lines of the upper screen (256 X 176 pixels).

Figure 4.1.2-2 shows the internal representation used to designate row (line) and column positions. See Section 2.1.10 for details on the organization of the Display Pixel and Attribute Files. See Section 5.2 for details on software support necessary for the advanced video modes.

FIGURE 4.1.2-2
DISPLAY FILE ROW/COLUMN NOTATION

BASIC Parameters	Internal	Representation	
Line/Row 0		24 (18H) 23 (17H)	
21		3	UPPER SCREEN
22 23		2 1	LOWER SCREEN
Column 0		33 (21H) 32 (20H)	
31		2	
		-	

4.1.3 2040 Dot Matrix Printer

Character output to the 2040 Printer is handled by the same routine used for the screen, SENDTV. When the Printer Flag=1, set by initialization for device "P", the pixel data is written into the Print Buffer instead of into the Display File. There is no Attribute Byte. The **INVERSE** which "attri butes" OVER and are controlled can be active. Since the Print Buffer is always precleared to zeros, OVER has no effect. works exactly as it does for the screen, i.e. INK pixels are zero and PAPER pixels are 1.

The Print Buffer is located at 23296 (5B00H) and is 256 (100H) bytes long, the data needed to print one line of 32 characters, each character comprised of 8 bytes (8 X 8 The buffer is cleared to zeros and pixels/character). the flag PRLEFT set to zero at power-on time (or execution of a NEW command). The PRLEFT flag is set to 1 whenever pixel data is written to the buffer. is used when exit is made from a program to print any unprinted data prior to program termination. As the pixel data for a particular character is entered into the buffer, the buffer address is incremented by 32 (20H); the sequential data in the buffer therefore represents 8 complete scan lines of 32 characters. When the Print Buffer is full, or upon processing an End-of-Line (ODH), or at program termination, the contents of the buffer are written to the Printer, the buffer is cleared and the PRLEFT Flag is set to zero.

Printer I/O is done via Port OFBH, but the Printer responds to any I/O Read/Write with Address Bit 7=1 and Address Bit 2=0. Therefore, any Port providing this combination, e.g. Ports OFA through OF8 and Ports OF3 through OFO as well as others, will interface to the Printer. See Section 2.1.13.3 for the bit definitions for Printer I/O. The pixel data is written to the device by the routine PRSCAN in module IO 2 of the Home ROM which outputs 1 scan line (32 bytes), one bit at a time on each call to the routine.

There are two controlling routines for output to the printer. DUMPR is called from SENDTV based on buffer full or End-of-Line control. This routine will call PRSCAN 8 times to output the 256 bytes of the Print Buffer (8 scan lines). The other routine is K DUMP which implements the COPY command. This routine calls PRSCAN 176 times to write the contents of the primary display file for the main screen to the printer (8 X 22). All of the low level print routines are in module 10_2 of the Home ROM

4.2 Cassette Tape

Tape I/O is done via Port OFEH. An I/O read of Port OFEH pulls in the cassette input on Bit 6. An I/O write of Port OFEH Bit 3 controls the tape output with Bit 3 = 1 genrating a high output and Bit 3 = 0 generating a low output.

Data is written to the tape under software control creating the following frequencies and format:

Sync Pattern of 4032 cycles at 806.5 Hz. (5 sec.)

Header: 17 bytes of data identifying the following data block as either Program, Number Array, Character Array, or Binary Code and containing other control information.

The header is written as Data, i.e. the Most Significant Bit first in each byte, 1 cycle at 2040 Hz. for a Zero and 1 cycle at 1020 Hz. for a One. The first byte is zero identifying the header. The final byte is a Checksum calculated by XOR of all preceding data bytes.

Software delay of approximately 835 milliseconds.

Sync Pattern of 1612 cycles at 806.5 Hz. (2 secs.)

Transition Pattern of 1 cycle at 2400 Hz.

Data Block: Written as Data (see above) with first byte = -1 (FFH) and a final Checksum byte.

Figure 4.2-1 shows the header formats for the various types of data.

The routines used to actually write and read the tape (W TAPE and R TAPE) are in the TAPE Module of the Extension ROM (see map in Appendix A). They are accessible via the Extension ROM Interface Routine listed in Figure 3.2.2-2. The general flow required to write a header and data block is:

- 1. Call W TAPE with A=0. IX contains the address of the header and DE contains the length.
- 2 Delay loop approximately 1 second.
- 3. Call W TAPE with A=FFH. IX contains the address of the data block and DE contains the length.

The R TAPE routine performs either a LOAD (transfers data from tape to memory) or VERIFY (compare data from tape against data in memory) operation, based on the status at entry: Carry Set for Load and No Carry if Verify. As for the Write, A=Block Type (0 for Header and -1 (FFH) for Data Block). IX contains the memory address.

The tape routines return Carry=1 for successful completion and No Carry for error or Break Key detected, Roth W TAPE and R TAPE exit via the routine W BORD which restores the Border color based on bits 3-5 of the system variable BORDCR. If the Break Key is detected during this exit routine, a RESTART 8 (ERROR) is executed.

NOTE: The write to Port OFEH in the exit routine restoring the Border Color has hit 3 = 0. This creates a final transition on the tape followina a write operation. This transition is necessary in order to successfully read back the final data bit from some tape recording devices. If you are calling the WTAPE routine so as to bypass the normal exit path, you must perform this final write to Port OFEH with Bit 3 = 0 within a similar timeframe.

Addendum to R TAPE routine: Register DE must contain the length of the-block to be read (DE=17 for the Header, and DE=HDLEN for Data). See Fig. 4.2-l for a definition of HDLEN.

FIGURE '4.2-1
TAPE HEADER FORMATS

HDTYPE(1) | HDNAME(10)

HDLEN

(LSB/MSB)

HDADD

(LSB/MSB)

HDVARS

(LSB/MSB)

PROGRAM	0	up to 10 ASCII Chars.	Length of Program + Variables (E LINE -) (PROG)		Length of Program = Offset to Variables) (VARS) - (PROG)
NO. ARRAY	1	I	Length Field from Data Structure	LSB=00 M6B=Array II 7	<u>0</u>
CHAR. ARRAY	2	n	Length Field from Data Structure	LSB=00 MSB=Array ID 7 110	<u>0</u>
CODE (BINARY)	3	n	Length Specified in SAVE	Address Specified in SAVE	N/A (=0)

4.3 Joysticks

The two joysticks are controlled via Register 14 (I/O Port A) of the Programmble Sound Generator Chip (see Sections 2.1.6 and 2.1.7). Address and data are passed via Ports OF5H and OF6H respectively. The joysticks are read by first addressing Register 14 in the PSG by writing a 14 (OEH) to Port OF5H. The data is then read by executing an IN from Port OF6H, having the port address in 280 Register C and the joystick (player) number in Register B (number = 1 or 2). Note that PSG Register 7, Bit 5 is assumed to be zero, enabling I/O Port A for input. If you ever use I/O Port A for output (R7, B6=1), you will want to clear Bit 6 prior to any input operation,

Sample routine:

GETJOY	LD	A, OEH	Load A = 14
	OUT	A, (0F5H)	Address the joystick port
	LD	B, playerno	
	LD	C, OF6H	Data Port address to C
	IN	A,(C)	Joystick data to A
	CPL		Complement to High Active
	AND	8FH	Get significant bits

The data read is LOW ACTIVE, i.e. all bits = 1 (byte=FFH) when the stick is at center and the button is not depressed. Figure 4.3-1 shows the interpretation of the data byte.

FIGURE 4.3-1

JOYSTICK DATA

Bit 7 6 3 2 1 0

STICK UP

STICK LEFT

STICK RIGHT

NOT USED (Always '1')

BUITON DEPRESSED

4.4 S/W Generated Sound (BEEP)

The BEEP command produces sound using the speaker by toggling Bit 4 of I/O Port OFEH to generate a signal of a calculated frequency and duration based on the command parameters. It uses the routine PARP which takes as input two parameters, one defining the period of the signal (HL) and the other defining the number of cycles to be generated (DE) and outputs DE+1 cycles of a tone having the period 8N+236 to 8N+246 T-States where (HL) = N. Both the BEEP and PARP routines are in the K SCAN module of the Home ROY. The PARP routine is also used to generate the keyboard "click" and the "raspberry" which can be varied by modifying the values in the system variables PIP (23609/5C39H) and RASP (23608 5C38H).

4.5 Sound Chip (SOUND)

The SOUND command writes the first parameter (register number) to Port OF5H (address to Programmable Sound Generator) and the second parameter (load data) to Port OF6H (data to PSG). The program line is scanned for multiple parameter pairs and continues writing address/data pairs to the PSG until the end of the statement is reached. See Section 2.1.6 for details on the hardware of the PSG.

5. 0 Advanced Concepts

5.1 Cartridge Software/Hardware

5. 1. 1 LROS

An LROS is identified by the following overhead bytes:

<u>Locati on</u>	<u>Description</u>
0000	Not Used
0001	Cartridge Type Ol=LROS
0002/0003	Starting Address (LSB/MSB)
	Address to be jumped to after Operating System initialization is complete. Order of bytes is as for a JP instruction.
0004	Memory Chunk Specification. Bits 0-7 represent Chunks 0-7 respectively in the Dock Bank in low active format:
	0 if in use 1 if not in use
	NOTE: When writing to the Horizontal Select Register (Port F4H), the

The Memory Chunk Specification is used to enable the specified chunks in the Dock Bank prior to jumping to the address specified in Location 2 and 3. Control is transferred from the Initialization code in the Extension ROM via the GOTO BANK routine in Home Bank RAM Chunk 3, therefore Bit 3 of the Memory Chunk Specification must be set to 1 in order for the transfer to be accomplished as designed (Chunk 3 also contains the Machine Stack).

Active

CAUTION: If Chunk 3 is marked for' use in the Dock Bank, then when the Memory Chunk Spec. is written to Port F4H by the Sank Enable code, execution will continue from that point in Chunk 3 in the Dock Bank with the Stack Pointer addressing ROM

Chunk Specification is High

An LROS is Z80 machine code and is in complete control of the TS 2068 hardware after transfer to the starting address has been made. It can directly implement an application, or it

can support multiple applications by implementing a language other than BASIC. An AROS dependent on such an LROS would have to be part of the same cartridge since there is only one cartridge connector.

Interruption Mode 1 has been set hy the **TS 2068 and** interruptions are enabled prior to passing control to the LROS starting address, therefore the LROS must contain appropriate code at location 56 (38H) to cover the case where the interruption occurs after Chunk 0 in the Dock Bank has been enabled, hut before any action by the software cartridge to disable the interruption has been taken. Once control is transferred, the LROS may then disable the standard TS 2068 interruption by setting hit 6 of Port FFH, mask the interruption by executing a DI instruction, or set a different Interruption Mode. It may change the location of It may also change the memory selection the Machine Stack. hy writing to Port OF4H with each bit set to 1 for the corresponding chunk to he enabled in the Dock Bank (high active format) or 0 to he enabled in the Home Bank. LROS may contain code in Chunk 3, hut it should be enabled after the OS RAM code has finished execution.

Now that your LROS is in the driver's seat, you are on your own! Some important points to remember when, , mapping your Dock Bank memory and doing bank switching are:

- 1. The Display RAM is in Home Bank Chunk. 2 for the primary display file and Chunk 3 for the second display file. This memory is accessed independently by the video hardware. The software only needs to enable it when actually reading or writing it.
- 2. The Dock Bank and Extension ROM Bank are mutually exclusive since they share the Horizontal Select Register in Port F4H. You will need a routine in the Home Bank RAM to do any switching between the two. You must also be careful to have the appropriate Home Bank Chunks enabled which are referenced by the Extension ROM code, e.g. the System Variables in Chunk 2 or possibly the bank switching code in Chunk 3.
- 3. Some interesting switching routines can be constructed by having parallel code in shadowing chunks of memory to take advantage of the "instant" switch in execution from one hank to another when the memory selection is made. E.g., a routine in the Dock Bank ROM in Chunk 6 could push a Home Bank address on the stack, write to Port F4H enabl inq Chunk 6 and any other desired chunks in the Home Bank (by deselecting them in the Dock), and have code at the next sequential instruction address in Home Bank RAM Chunk 6 to continue the path. A Return

instruction, for example, would pass control to the address on the stack. Code to switch memory back to the Dock Bank could be mapped in a similar way.

- 4. If you plan to use any of the System software routines, unless you know otherwise it is probably necessary to maintain the contents of Home Bank Chunks 2 and 3 intact (and Chunk 7 if the OS RAM routines have been relocated). The system routines rely heavily on the System Variables and assume that any pointers in them are pointing to the Home Bank. See Section 3.3.4.1 for details on using the RAM Interruption Handler and Section 6.0 for known corrections when using System S/W
- 5. If you design an LROS implementing a higher-level language and want to support an AROS application, you must design your own initialization code to detect the presence of such an AROS. The TS 2068 will not look for the presence of an AROS if an LROS is present, therefore there will be no entry for the AROS in the System Configuration Table. Note that since there is only one cartridge connector, such an AROS would also have to be integrated with the supporting LROS in a single cartridge or cartridge board.

5. 1. 2 AROS

An AROS is identified by the following overhead bytes:

Location	<u>Description</u>
32768 (8000H)	Language Type 1 = BASIC [and machine code] 2 = Machine code only (Any other value will result in Error S, Missing LROS)
32769 (8001H)	Cartridge Type 2 = AROS
32770/32771 (8002/8003H)	Starting Address(LSB/MSB) BASIC AROS = Addrs. of First Program Line
	Machine Code AROS = Addrs. of First Z80 Instruction
32772 (8004H)	Memory Chunk Specification Bits 0-7 represent Chunks 0-7 respectively in the Dock Bank in low active format as follows: 0 if in use
	1 if not in use
	NOTE: Bits 0-3 must he set to 1 for proper execution.
32773 (8005H)	Autostart Specification 0 = No Autostart 1 = Autostart
32774/32775 (8006/8007H)	Number of bytes of RAM to be Reserved for Machine Code Variables (LSB/MSB - 0100H=1 byte Reserved; 0002H=512 bytes Reserved.

5. 1. 2. 1 BASIC AROS

A BASIC AROS is supported by special code in the System ROM (Section 3.2.1.2). The portion of the cartridge containing BASIC program lines is restricted to the upper half of the memory space beginning at location 32776 (8008H) in the Dock Bank. Support for User-Defined Functions, which requires searching for

the definition parameters within the program, is not implemented. Also, because the support code interfaces directly to the bank switching code in. Home RAM Chunk 3 (does not allow for it to be relocated to Chunk 7), a BASIC AROS cannot utilize the advanced video modes and also execute BASIC program statements. If the cartridge contained machine code supporting advanced video modes, the TS 2068 would have to be returned to "Normal" video mode with the RAM mapped accordingly (see Figure 1.1-3) if control were to be returned to the BASIC Interpreter USR code.

Since execution of the cartridge BASIC program is done by copying program lines to a buffer in the Home Bank RAM (ARSBUF), the most efficient cartridge execution is obtained by making program lines as large as possible, 1.e. making use of the multi-statement feature of the TS 2068. The reverse is true concerning execution of **READ** commands. An entire DATA statement is copied to the Home Rank RAM but only the current item is It therefore will be more efficient to not make DATA statements excessively long. program lines appear in the cartridge in exactly the same format used in the RAM, i.e. Line Number (2 (2 Command Token. bytes). Length bytes), terminated by an Enter (ODH). Numeri cal appearing in a program line are followed by the CHR\$ (OEH) byte and 5-byte floating point format described in the User Manual (see Appendix C of the TS 2068 User The Variables area is built in the RAM (address in VARS) exactly as though the program were in All variables, including arrays, are built at the time of program execution · there is no provision for copying or accessing ore-defined: variables from the cartri dge. however. see Section 5.3.2. program line must be followed by a terminator byte having the Most Significant Bit set (e.g. 80H), otherwise the Interpreter cannot detect the end of the program

A BASIC AROS may contain machine code accessed via the USR function. If the machine code address is within the memory designated by the AROS Memory Select Specification as 'in use', the Dock Bank will be enabled, otherwise the machine code address is assumed to be in the Home Bank. (See Section 6.0 for details on known problems in this area of the code.) once control is transferred to the machine code in the AROS, the ball is now in your court. could have additional machine code residing in the lower half of the Dock Bank memory space which you can You only have to know what you're now switch in. If and when you are ready to go back to

executing your BASIC program, you must enable Chunks 0-3 in the Home Bank and have the stack and other Home Bank RAM in the proper state for return to the USR function code in the BASIC Interpreter, i.e. what it was when the USR function passed control to you.

The Autostart feature begins execution out of the BASIC AROS immediately after system initialization. If the Autostart parameter is zero, control will go to the BASIC Interpreter as if there were no cartridge installed, although internal flags have been set noting that a BASIC AROS is present. The cartridge will be started when you execute a RUN or GOTO Line Number command.

The final parameter in the overhead bytes allows you to reserve RAM beginning in Chunk 3 at Location 26688 (6840H) for machi ne code and/or machi ne code The designated number of bytes are reserved variables. by the AROS support code prior to beginning program The AROS buffer (ARSBUF) begins immediately execution. following this reserved area (see Fig. 1.1-3). that this area is part of the RAM that gets relocated if the second display file is opened. Therefore access to your machine code and/or variables should he conditional on the video mode rather than direct if you are going to be using the advanced video modes,. reserved area begins at 31488 (7B00H) when the second display file is open. Remember -- use of the second display file and execution of BASIC program from the cartridge are mutually exclusive.

The standard technique of reserving space for machine code by modifying RAMTOP could also be used to place machine code/variables at the top of the Home Bank RAM If you place code above (RAMTOP) which is to be accessed via the BASIC USR function, the affected memory chunk(s) cannot be marked as "in use" in the cartridge in the AROS Memory Selection Specification.

5. 1. 2. 2 Machine Code AROS

A machine code AROS is similar to an LROS with the exception that it is dependent on the System ROM for interruption handling if the interruption is enabled. This implies that Chunks 0-3 are enabled in the Home Sank.

The Autostart parameter should be set to 1 since if it is zero, control will be passed to the BASIC Interpreter as if the cartridge were not present. There is no BASIC command to directly start execution of a Machine Code AROS.

Because of a "bug" in the Initialization code handling a Machine Code AROS, the parameter specifying the number of bytes to be reserved for machine code variables must be adjusted by adding 21 (15H) to the actual number of bytes needed. This preserves the 21 byte CHANS area starting at 26688 (6840H). reserved area then starts at 26709 (6855H) (or 31488 (7B15H) when the second display file is open). Access to the variables should be conditional based on the video mode rather than direct if you plan to use the If you do not plan to utilize advanced video modes. any of the system software, you can disregard the above and "do your own thing" with the RAM

See Section 6.0 for known corrections when using System $\ensuremath{\mathsf{S/W}}$

5.1.3 EPROM Cartridge Board Application

Figure 5.1-1 provides the logic diagram for a pluggable EPROM cartridge board capable of configuring up to four 16K-byte (128K-bit) EPROMs of the 27128 type. The artwork for the PC board implementing that logic diagram is provided in Figures 5.1-2, 5.1-3 and 5.1-4 for the Component Side art, the Solder Side art, and the Solder Mask (one common mask for both sides), respectively.

See Section 2.4.2 for mechanical details of the connector portion of the PCB.

FIGURE 5.1-1
PLUGGABLE EPROM CARTRIDGE BOARD
LOGIC DIAGRAM

FIGURE 5.1-2

EPROM CARTRIDGE BOARD

COMPONENT SIDE ARTWORK

FIGURE 5.1-3
EPROM CARTRIDGE BOARD
SOLDER SIDE ARTWORK

FIGURE 5.1-4
EPROM CARTRIDGE BOARD
SOLDER MASK

5. 2 Advanced Video Modes

The following sections describe the various video modes available on the TS 2068 and the major software support functions necessary. See Sections 3.2.2.3 and 3.2.2.4 for details on using the Video Mode Change Service. Appendix C contains descriptions and code listings for a number of software packages developed by Timex that support various screen modes and applications. Reference to these packages should aid in gaining an understanding of the software techniques needed to support the video mode hardware.

The TS 2068 video mode hardware works out of two areas of RAM, the primary display file at 4000H and the second display file at 6000H. Each area consists of 5912 (1800H) bytes used for pixel and/or attribute data based on the mode selected via bits 0-5 of Port FFH. The pixel data area divides into three blocks, each supporting 8 contiguous lines on the screen. See Section 2.1.10 for details on organization of the display RAM Because the two display files occupy the same relative positions within their respective 8K Chunks, by setting/clearing Address Bit 13 a software routine can address the corresponding location in each file:

In order to display a character on the screen, 8 bytes of pixel data must be entered into the display file, one for each scan row. For a particular character position, the scan rows are 100H bytes apart. E.g, the 8 bytes of pixel data for position Line O/Column O are located at 4000H, 4100H, 4200H,....,4700H. Since this is the first character position on the screen, its Attribute byte, in Normal Mode, is the first byte in the Attribute File which starts at 5800H. The 768 (300H) Attribute Bytes are in sequential order starting at position O/O through O/31, 1/O through 1/31, and so forth, ending with 23/O through 23/31.

One method of determining the starting display file address for a particular line/column position is to build a table containing the starting address of each of the 24 lines (2 bytes per entry). Then construct an algorithm that takes the line number and forms an index by multiplying it by 2 (shift left 1), add the index to the base address of the table, and read out the display file address. The column position is then simply an offset added to this address. By testing VIDMDD (23746 - 5CC2H) you can determine whether to set Bit 13 for the second display file, e.g. because you are in an odd column in 64-column mode, or simply because you are using the second display file in dual screen mode.

The following example illustrates this method. The table entries are in Hex:

		TABLE		
LINE #	INDEX	LSB/MSB		
0	0	00 40	4000H =	Line 0 (Top of Screen)
1	2	20 43		Line 1
2	4	40 40		Line 2
		(+ 20H)		
		(+ 20H)		
7	14(0EH)	EO 40		Line 7 (End of Upper Block)
8	16(10H)	00 48	4800H =	Line 8 (Top of Middle Block)
9	18(12H)	20 48		Line 9
	•	(+20H)		
		(+ 20H)		
15	30(1EH)	E0 48		Line 15(End of Middle Block)
16	32(20H)	00 50	5000H =	Line 16(Top of Bottom Block)
17	34(22H)	20 50		Line 17
		(+ 20H)		
		(+ 20H)		
23	46(2EH)	EO 50		Line 23(End of Bottom Block)

Column 23 (11H/17H) would yield a display file address of 5020H + 17H = 5037HIf VIDMOD indicated the second display file was to be used, setting Bit 13 of the address would yield 7037H. If we were using 64-column mode, because the column is odd (Bit 0=1) we would set Bit 13 of the starting line address getting 7020H, then divide the column address by 2 (shift right 1) since there are only 32 columns in each display file. This would give us an offset of 11 (OBH) which added to the starting address results in a display file address of 702BH. Having the display file we now insert the 8 bytes of pixel data for the character desired, incrementing the display file address by 100H between each write (this is easily done by simply incrementing the upper register of the register pair The following routine is a the address). containing simplified version illustrating this process. It assumes that Reg. Pair DE contains the address of the desired character in the character table and that HL contains the address of the desired position in the display file.

	LD B,8	Set Scan Count
LOOP	LD A	Get pixel pattern
	LD (HL), A	Write to Display File
	INC DE	Next pixel Pattern byte
	INC H	Next DF Position (+100H)
	DJNZ LOOP	Continue for 8 Scan Rows

Finally, we must update the Attribute Byte controlling the updated character position. The following sample algorithm will formulate the Attribute File address given the address of any of the scan rows of the character position. We will assume we have saved off the starting display file address and now have it in Register Pair HL.

GETATT	LD A, H		MSB of DF Address		
	RRCA		Shift right circular		
	RRCA		to get Bits 3&4 (Block #)		
	RRCA		to positions 0&1		
	AND 3	}	Clear other bits		
	OR 5	8H	OR in Attr. File Base Adrs.		
	LD H	I, A	Update MSB		

NOTE: The LSB is the same as for the pixel data.

Using our first example, with a Display File address of 5037H, the Attribute File address would be 5A37H. The second example was using 64-Column Mode which does not require attribute file update (attributes determined by video mode setting).

See Section 5.2.2 for a sample algorithm to formulate the display file address for X, Y pixel coordinates. The above routine for calculating Attribute File address would be substituted for the method used in the example if not working in High Resolution Graphics mode.

In addition to data insertion, two major screen support functions are scrolling and clearing the screen. Scrolling is done in the System ROM by copying the entire display file data and attribute controls up one line position (Line 1 to Line 0, Line 2 to Line 1, etc.) and inserting a blank line at the bottom Numerous more elaborate scrolling techniques can be implemented using various directions (up, down, left,

right) and smaller areas or "windows" of the screen. Similarly, clearing the screen, which consists of writing zeros to the data file and updating the attribute bytes to a uniform value, can be implemented on smaller sections of the screen. The software packages in Appendix C contain examples of such implementations.

5. 2. 1 Dual Screen Mode

In this mode the second display file is used to provide a second independent screen having the same data and attribute organization as the orimary display file. By writing to Port FFH with Bits 0-5 = 1 (Bit 0 set), the second display file is activated at the video screen. Appendix C contains a software package supporting Dual Screen Mode., The software package uses the system variable VIDMDD to determine which display file is the target of the current operation. values for VIDMDD have been defined to permit building of one display file while the other is active at the screen so that a complete screen image is ready when the hardware mode is Copy and Exchange routines have been provided to move data within and between the two display files. enables the BASIC graphics commands like PLOT, CIRCLE and DRAW, which work only in the primary display file, to be used to create screens which are then moved into the second display file.

Because the System ROM works only in the primary display file, you can come up with some unusual situations when you have the second display file active at the screen and you are executing BASIC or using the System ROM routines. error occurs, for example, the error message will be placed into the primary display file and the ROM will be waiting for input from the keyboard to direct the next action, but all of this is invisible since you have the other display file The machine will appear to be "hung", but it is only Be prepared to enter a OUT 255,0 to doing its normal thing. an invisible command line in order to switch the display back Don't forget to also set VIDMDD to the standard file!!! (POKE 23746, 128) to keep things consistent inside the dual screen support code.

5.2.2 High Resolution Graphics Hode

This mode is set by writing to Port OFFH with Bits 0-5=2 (Bit 1 set). In this mode, also called Extended Color Mode, the second display file is used to expand the number of Attribute bytes from one for each 8 X 8 pixel group to one for each 8 X 1 pixel group thus giving 32 X 192 positions within each of which two colors plus Bright and Flash can be defined. Each byte of pixel data entered into the primary display file has

its own Attribute byte in the corresponding location in the second display file, e.g. the byte written to Location 4000H has its Attribute byte at Location 6000H, the byte at 47FFH (last byte of last scan row in Line 7) has its Attribute byte at Location 67FFH, the byte at 57FFH (last byte of last scan row in Line 23) has its Attribute byte at Location 77FFH. The routine writing data to the screen would therefore enter the pixel data to the desired location and then set Address Bit 13 of the Primary Display File address and write the desired attribute control byte to the resultant location. If normal characters are being written to the screen in this mode, eight Attribute bytes must also be written, one for each of the bytes defining the character. The same technique would be used for writing to both display files, i.e. for each of the seven bytes entered after the first, the display file address would be incremented by 256 (100H).

The System ROM graphics commands (PLOT, DRAW and CIRCLE) place data into the Primary Display File and update the Attribute File associated with the standard video mode In High Resolution Graphics Mode, (5800H-5AFFH). hardware does not access this area for attribute control, therefore its contents have no visible effect. If before or immediately following execution of the BASIC graphics operation, you update the attribute control information in the second display file, you could possibly take advantage of the System ROM graphics capability. Admittedly, this is not a simple operation in the case of circles or drawing diagonal lines and it will be more efficient to develop code specifically to support this video mode.

The following sample routine takes as input two single byte binary digits representing the X and Y coordinates of a pixel position on the screen. It formulates the display file address of the byte containing the pixel, creates a pattern or mask byte for the specified bit position, sets the bit in the display file, and updates the attribute byte (High Resolution Graphics Mode assumed). This represents a simplified version of the approach used in the System ROM graphics support routines PLOTBC and SCRMBL.

The two inputs are assumed to be as follows:

- Reg. C = X Coordinate 0-255 (0-FFH) going left to right across the screen.
- Reg. B = Y Coordinate 0-191 (0-BFH) going from bottom to top of the screen.

NOTE: This covers the full vertical range of 192 positions.

The Y Coordinate is checked for valid range and reversed directionally so that 0 represents the top of the screen and 191 represents the bottom After this reversal, the two coordinates represent the following values:

We first formulate the MSB of the display file address using the Block and Scan Line information in the Y Coordinate:

PLOTXY	PUSH	(SAVECO), BC	Save coordinates
	LD	A, 191	Test Y within range
	SUB	В	· ·
	JP	C, ERROR	Y coordinate beyond range
	LD	В, А	Y Coordinate now 0=Top
	AND	OCOH	Get Block No. (0-2)
	RRA		Shift Bits to Pos. 3&4
	RRA		
	RRA		
	LD	H.A	Save Block Bits
	LD	H,A A,B	Y Coordinate
	AND	07	Get Scan Row Bits
	OR	H	Conbine Block and Scan Row
	OR	40H	Base Address of DF (4000H)
	LD	H. A	H = MSB of DF Address

Next we formulate the LSB of the display file address using the Line information from the Y Coordinate and the Column information from the X Coordinate:

LD	A, C	Get X Coordinate
RLCA		Align to Pick Up Line
RLCA		Bits from Y
RLCA		A=2 LS Bits Column/XXX/3 MS
		Bits Column
AND	0C7H	Clear Bits 3-5
LD	L, A	Save A in L
LD	A, B	Get Y Coordinate
AND	38H	Get Line Bits
OR	L	Combine with Col.Bits
RLCA		Shift to Final Position
RLCA		A=Li ne #/Col um
LD	L, A	L = LSB Display File Addrs.

Next we get the pixel position within the byte by taking the last 3 bits of the X Coordinate and create a mask byte having all bits zero except the addressed pixel. This mask is then used to set the bit in the Display File. The address is set to Display File 2 to update the Attribute File (High Res. Graphics Mode is assumed to be active), and the routine is finished. The memory locations defined as ATTR and SAVECO are for illustration purposes only:

	LD	A,C	Get Pixel Position
	AND	7	O=Leftnost (MSB);7= Rightnost (LSB)
	LD	B,A	Use as Control Count
	INC	B, ' (B=1 - 8
	LD	A, 0000001B	Bit Mask
LOOP	RRCA		Rotate Mask Bit
	DJNZ	LOOP	to Proper Position
	OR	(HL)	OR Bit into DF
	LD	A, 20H	
	OR	H	Set Bit 13 for DF2
	LD	H,A	HL = Attribute File
	LD	A、(ATTR)	Get Attribute Byte
	LD	(HL), A	Update Attribute File
	POP	BC	Original X/Y to BC Regs.
	RET		_

Repetitive calls to this routine with the appropriate X/Y Coordinate values will "draw" on the screen. The System ROM routines for drawing lines and circles calculate the successive X/Y Coordinate values and use common low-level routines similar to the above to place each pixel in the display file.

5. 2. 3 64-Column Mode

In this mode, set by writing to Port OFFH with Bits 0-2=6 (Bits | and 2 set) and Bits 3-5 selecting ink color (0-7), the pixel data portions of the two display files are merged by the hardware on an alternating column basis to produce 64-columns across the screen. All even columns $(0, 2, 4, \dots 62)$ are derived from the primary display file and all odd columns $(1,3,5,\ldots,63)$ are derived from the second display file. There are still 24 lines vertically from top to bottom The attributes are controlled by bits 3-5 written to Port FFH The Bright selecting one of eight ink/paper combinations. and Flash attributes are fixed at 0 and the Border is fixed The Attribute Files in RAM at to match the paper color. 5800H-5AFFH (primary display file) and 7800H-7AFFH (second display file) are not utilized in this mode.

Software supporting this mode must set up the display file address for character insertion based on the column position (even=DFl; odd=DF2). When scrolling the screen (or a portion of it), any line of text on the screen requires the same operation to be done at the corresponding locations in each This is also true to clear the screen (or a display file. portion of it). To save a Screen on tape you must save two Code files. one for each display file. The SAVE filename SCREENS will work for the Primary Display File only. will have to specifically SAVE the second display file via a SAVE filename CODE 24576, 6144. Note also that because the Border color is fixed by the video mode, you will not see the usual "stripes" during a tape operation.

Code to support an 80-column mode screen was developed utilizing the 64-column hardware mode and redefining the character size to a 6 X 8 pixel group (there is really room for 84 characters if the full 256 pixel width is used). Since individual characters now can span the two display files (e.g. 2 pixels in DFl and 4 in DF2) insertion of data into the display files involves masking the 6-bit character (or portion thereof) with the 8 bits of data read/written from/to the display file.

Appendix C contains descriptions and code listings of software packages supporting 64 and 80-Column modes.

5. 2. 4 Other

Appendix C also contains software packages supporting the following video screen features:

- A. 40-Column Mode utilizes the 6 X 8 character set defined for 80-Column Mode in "normal" mode. May be combined with the Dual Screen package.
- B. Sprites supports movement of software-defined objects and multi-directional screen scrolling services in the Primary Display File. You must create the actual bit map defining the shape of your sprite(s), but this package does the rest.

5.3 Other Advanced Concepts

5.3.1 Interruption Fielding

For a machine code program executing in the Home RAM you can intercept the 17 ms. interruption for your own purposes by permanently enabling Chunk O in the Extension ROM Bank (write a 1 to Port OF4H and always have Bit 7 of Port OFFH = 1) and inserting at Location 25262 (62AE Hex) a branch to your own interruption handler. (Or if VIDMDD is not zero, insert your branch instruction at Location 64110 (FA6EH).) By doing this you are forcing the interruption to branch to the RAM and then bypassing the OS RAM Interruption Handler - see Sections 3. 7. 33.1 and 3. 3. 3. 1. Because the Video Mode Change Service automatically updates internal branch addresses in the OS RAM code when it is relocated between Chunk 3 and Chunk 7, you probably do not want to directly overlay the OS RAM Interruption Handler with your own code if you will be using the Video Mode service. Your branch instruction at 62AEH. however, will be copied unmodified to location FA6EH in Chunk 7 and vice versa.

Note that this technique cannot be used if you are using BASIC since then you must have Chunk 0 enabled in the Home Bank. It also cannot be used from a cartridge because the memory selection hardware (Port 0F4H) is common to the Dock and Extension ROM Banks and can only enable one of them at a given time as selected by Bit 7 of Port 0FFH.

5.3.2 BASIC AROS Variables

In order to use pre-defined arrays and/or other BASIC variables, store them in the cartridge (possibly in the lower half of the addressable space which is not usable for BASIC program) and branch to a machine code routine via the USR function at the beginning of your BASIC AROS program this routine to do the necessary memory selection and copy your data from the cartridge to the RAM (address in VARS). Adjust the System Variables E LINE, WORKSP, STKBOT and STKEND to all point to the first free memory following your BASIC Of course, all BASIC variables must conform to vari ables. the format expected by the BASIC Interpreter. In addition to structures. you can also store screen images machine code/variables in the cartridge for transfer to the RAM under your control. Consider using the XFER_BYTES service in the OS RAM

6.0 Known "BUGS" and Corrections

This section describes the known problems in the TS 2068 System Software and gives corrections or work-arounds where these have been defined.

6.1 LROS and Autostart Machine Code AROS

- 6.1.1 If you will be using the System ROM Keyboard routines and accessing the input character code from system variable LAST K (5C08H), you must initialize the TS 2068 to "L" mode by setting the system variable MDE at 23617(5C41H) to zero and setting Bit 3 of FLAGS (23611 -5C3BH) to 1. (The TS 2068 is in "K" mode when control is passed from System Initialization to the Cartridge; Keyword Token codes will be placed in LAST K instead of character codes.
- 6.1.2 If you will be using the System ROM Calculator routines (RESTART 40 (28H)) or any ROM routines that invoke them, you must initialize the System Variable YEM by doing the following:

LD HL, 5C92H Set HL=MEMBOT LD (5C68H), HL Initialize MEM

- 6.1.3 Chunk 3 must not be designated as "in use" by the Cartridge Memory Selection Specification byte. This will cause deselection of the bank switching code prior to completion of the transfer of control to the cartridge starting address. Once control has been transferred, the cartridge code may then enable Chunk 3 in the Dock Bank if desired. (See Section 5.1.)
- 6.1.4 No entry is made in the System Configuration Table for an RROS if an LROS is present. This means that an LROS designed to support either RAM based or cartridge based applications must include code for detection of an AROS.

6. 2 Machine Code AROS

When setting the AROS Overhead parameter requesting RAM space for machine code variables, 21 + n bytes (15H + n) must be requested where n is the number of bytes needed. The machine language variables area then starts at 6855H immediately following the 21-byte CHANS area. (See Section 5.1.2.3.) NOTE: This does not apply to an AROS that contains both BASIC and machine code.

6.3 BASIC AROS

- 6.3.1 USR Function When testing the USR address against the Cartridge Memory Selection byte to determine if the address is in the Home Bank or the Dock Bank, the wrong nibble is tested in the register thus a valid cartridge address could be erroneously processed as a Home Bank address. Since the ROM code cannot be corrected, the machine code in the cartridge would have to be moved to an address that does not cause a problem
- 6.3.2 FOR/NEXT If the limit of the FOR statement has already been passed on its initial execution, (e.g. FOR A=1 TO 10 and A has been set to 12), control is passed to the statement following the corresponding NEXT. In the AROS support code, the address of this statement is lost giving unpredictable results. Since the ROM code cannot be corrected, care must be taken not to use this technique in an AROS Cartridge. Normal usage of FOR/NEXT loops is not affected.
- 6.3.3 Advanced Video Modes Because the BASIC AROS support code interfaces directly to the Bank Switching code in Chunk 3 (does not access based on its relocatability), the second display file cannot be open when executing BASIC program from an AROS.

6.4 Video Mode Change Service

6.4.1 Available Memory Test · When the size of memory needed is calculated by adding the size of the second display file (6912 bytes or 1800H) to the memory now in use (address in System Variable STKEND), the code fails to Thus if the address in STKEND is check for overflow. greater than 58623 (E4FFH), the fact that there is not enough free memory to open the second display file will not be detected and the systen will "crash". If your BASIC program and/or variables area are large, you may want to make this test yourself prior to invoking the Video Mode Change Service in order to The size of memory needed is avoid this problem subsequently tested against the contents of RAMTOP and if there is not sufficient space (value in RAMTOP is less than size needed), you will get Error 4, Out of Memory.

6.4.2 RAMTOP - When the machine stack and OS RAM code is moved to Chunk 7, the User Defined Graphics area is moved down in RAM by 2112 bytes (840H) to make room for the stack and OS RAM routines at the top of memory. The pointer in UDG is updated, however, the value in RAMTOP is not modified to insure that the relocated UDG area as well as the OS code and stack are protected from expansion of the BASIC program You can avoid problems by setting RAMTOP via a CLEAR command specifying an address no greater than 63255 (F717H) prior to invoking the Video Mode Change Service. This reserves space between RAMTOP and the end of memory of 2280 bytes (8E8H) utilized as:

168 bytes (A8H) User Defined Graphics (21 X 8)
2112 bytes (840H) Machine Stack and OS Routines
2280 (8E8H)

The software packages in Appendix C are written assuming that RAMTOP is set to 57343 (DFFFH) or lower to protect the machine code which is loaded beginning at 57344 (E000H).

- 6.4.3 NEW Command If you have used the Video Mode Change Service to open the second display file and now wish to execute the NEW command, you should first return the computer to "normal" mode by calling the video mode service with A=zero. This returns the User Defined Graphics and other RAM structures to their normal locations. If you don't do this, the UDG area will remain in the alternate location and, if you have not corrected RAMTOP as explained above, part or all of your UDG area could be cleared to zeros by the NEW command.
- 6. 4. 4 VIDMOD When Mode 128 (80H) is designated for activating the Primary Display File in Dual Screen Mode the System Variable VIDMDD at 23746 (5CC2H) is set to zero instead of to 128. This creates a potential problem if the 17 ms. interruption occurs before VIDMDD can be corrected since the interruption fielder will branch to Chunk 3 instead of to Chunk 7 and Chunk 3 is now in use for the second display This problem is corrected by disabling the interruption prior to calling the Video Mode Change Service and setting VIDMDD to the correct value prior to re-enabling it. These corrections are included in the Extension ROM Interface Routine in Figure 3.2.2-2.

NOTE: On an initial access changing video mode from normal to Mode 128, the interruption is re-enabled within the Video Mode Change Service itself after copying the stack and other Chunk 3 data to Chunk 7. This cannot be corrected, but has not proven to present a problem in actual use. At the point where the interruption is first enabled. the Chunk 3 code is still intact allowing for correct processing of one and the path length from there to the interruption, point of correcting VIDMDD is apparently less than 17 The interruption is also re-enabled within the Video Mode Change Service if you have applied the patches for the BANK ENABLE and RESTORE STATUS routines (Section 6.5.4) which are executed connection with inserting space into the RAM to open the second display file. Again, this has not proven to be a problem in actual use.

6.4.4 Interruption Inhibit · By setting Bit 6 of Port OFFH to a 1, the normal 17 ms. interruption generated from the SCLD to the Z80A CPU will be inhibited. When Port OFFH is written to by the Video Mode Change Service, If you wish to inhibit the Bit 6 is forced to zero. normal interruption via this mechanism and also plan use the Video Mode Change Service, recommended that you first invoke the service to remap the RAM and open the second display file, then set Bit 6 of Port OFFH to inhibit the normal interruption and write your own routine(s) for subsequent changing of the video mode setting that do not involve remapping the RAM In this way you can maintain the value in Bit 6.

6.5 OS RAM Routines

In patching the OS RAM routines, care must be taken not to relocate CALL and JP instructions since this affects the modification of the code when it is moved between Chunks 3 and 7. All of the code containing actual addresses must be modified to reflect the relocation and this is done using a table in the Extension ROM Since the table cannot be changed, none of these instructions can be moved. Also, any CALL or JP instructions added must be modified by you when the code is relocated.

6.5.1 Function Dispatcher -For a variety of reasons such as conflict with use of the IX Register, incorrect entries in the ROM Function Dispatcher Jump Table, etc. some Service Codes have been deleted from the Function Dispatcher table (Table 3.3.4-z). In addition, the following correction to the GET STATUS routine' is required in order to successfully utilize the Function Dispatcher from a cartridge.

- 6.5.2 GET STATUS- Returns invalid memory selection status for-the Home Bank, ROM Extension and Dock. This results in switching out of either the Home Bank or the Dock when status is "restored". This affects use of the Function Dispatcher and GET WORD routines, and any other code using GET STATUS. Figure 6.5-1 shows the patches and additions necessary to correct this routine.
- 6.5.3 PUT WORD- Write data passed in Reg. Pair DE is overwritten prior to use. Figure 6.5-2 shows corrections.
- 6. 5. 4 BANK_ENABLE and RESTORE_STATUS-

If the 17 ms. interruption occurs during update of the nemory selection hardware, it can cause the system to hang and RAM to be overwritten. This occurs when the interruption happens in an interval when Port FF Bit 7 is zero (thus selecting the Dock Bank) and Port F4 Bit 0 is one (thus enabling Chunk 0 in the Dock Bank) and there is no memory in Chunk 0 of the Dock Bank. This can be true when there is no cartridge installed, or if the cartridge installed is an AROS. This problem is corrected by disabling or masking the interruption while updating the memory selection hardware. Figure 6.5-3 shows one implementation of this correction.

- 6.5.5 SAVE STATUS and RESTORE STATUS The value of Port FFH which includes video mode and interruption inhibit as well as Ext. ROM/Dock Select is saved and restored as a full 8-bits. Therefore any modification of this port by code accessed between execution of SAVE STATUS and subsequent execution of RESTORE STATUS (erg. via CALL BANK or use of the Function Dispatcher) is "undone". This is one reason the Video Mode Change Service and some of the bank switching routines such as BANK ENABLE cannot be meaningfully accessed via the Function Dispatcher.
- 6.5.6 CALL BANK- Does not correctly retrieve the stack entry designating the count of parameters being passed. Memory is overwritten in the case where this count is not zero. This is corrected by setting Location 6610H = 9 (POKE 26128,9). You only need to apply the correction once; it will be duplicated in Chunk 7 if the code is relocated.

FIGURE 6.5-1
GET_STATUS CORRECTIONS

	LOCATION (HEX)	OBJ. CODE (HEX)	SOURCE STAT	EMENT	C	OMMENTS
	(,	,	Input: Ban	k # in	В	
			Mem	ory Se	B (Bank Sta lection in C ve Format)	tus if Exp. Bank)
	6405	F5	GET STATUS	PUSH	AF Sa	ve Regs.
	6406	D5		PUSH	DE	G
	6407	78		LD	A. B Ge	t Bank #
	6408	FEFE		CP		st if Ext. (254)
*	640A	2824		JR	Z, GS EXT	• •
	640C	FEFF		CP		st if Home(255)
*	640E	2837		JR	Z, GS HOME	, ,
	6410	A7		AND		est if Dock (0)
t .	6411	2827		JR	Z, GS DOCK	`,
	6413				,	
					(Code for E	xpansion Banks
					not appl	
					· · · · · · · · · · · · · · · · · · ·	,
•	6430	OEFF	GS EXT	LD	C, OFFH A	ssume none
•	6432	DBFF	do Lai	IN		st if selected
r	6434	E680		AND	80H	st II screeteu
:	6436	2812		JR	Z, GS XT1 No	t active
	6438	1808		JR		et Hor. Select
:	643A	0EFF	GS DOCK	LD	_	ssume none
:	643C	DBFF	us book	IN	•	st if selected
	643E	E680		AND	80H	st II screeteu
•	6440	2008		JR	NZ, GS XT1 N	ot active
•	6442	DBF4	GETHS	IN		Get Hor. Select Reg.
•	6444	2F	GLIID	CPL		Invert to Low Active
•	6445	1802		JR		Exit
•	6447	DBF4	GS HOME	IN		All bits set are not
	~ ,			11.1	•	active in Home Bank
ŧ	6449	4F	GS XTO	LD		Memory Select to C
	644A	Dl	GS XT1	POP	•	Restore Regs.
	644B	F1		POP	AF	mesente mess.
	644C	C9		RET		Return

The asterisks mark the locations modified. See next page for list of corresponding POKE's for BASIC.

FIGURE 6.5-1

GET STATUS CORRECTIONS

(continued)

From BASIC:

POKE	25610, 40	(Location	640AH)
POKE	25611, 36		
POKE	25614, 40	(Location	640EH)
POKE	25615, 55		
POKE	25617, 40	(Location	6411H)
POKE	25618, 39		
POKE	25648, 14	(Locati on	6430H)
POKE	25649, 255		
POKE	25650, 219		
POKE	25651, 255		
POKE	25652, 230		
POKE	25653, 128		
POKE	25654, 40		
POKE	25655, 18		
POKE	25656, 24		
POKE	25657, 8		
POKE	25658, 14		
POKE	25659, 255		
POKE	25660, 219		
POKE	25661, 255		
POKE	25662, 230		
POKE	25663, 128		
POKE	25664, 32		
POKE	25665, 8		
POKE	25666, 219		
POKE	25667, 244		
POKE	25668, 47		
POKE	25669, 24		
POKE	25670, 2		
POKE	25671, 219		
POKE	25672, 244		
POKE	25673, 79		

FIGURE 6.5-Z
PUT WORD CORRECTIONS

	LOCATION	OBJ. CODE	SOURCE STATEMENT	COMMENTS
	(HEX)	EX)		
			Input: Data in DE, Address i	n HL, Bank # in B
	6338	F5	PUT-WORD PUSH AF	Save Regs.
	633C	c5	PUSH BC	o
	633D	CD5E64	CALL GET NUMBER	Bank # of Owner
*	6340	D 5	PUSH DE	Save Data
	6341	50	LD D, B	Save Target Bank #
	6342	47	LD B, A	Bank # of Owner
	6343	CD0564	CALL GET-STATUS	Get Bank Status
	6346	C5	PUSH BC	Save It
	6347	CD4D64	CALL GET CHUNK	Get Bit Map
	634A	2F	CPL	Set High Active
	634B	42	LD B,D	Target Bank # to B
	634C	4F	LD C.A	Memory Select Byte
	634D	CD9964	CALL BANK ENABL	
*	6350	Cl	POP BC	Saved Bank Status
*	6351	DI	POP DE	Saved Data
*	6352	73	LD (HL), E	Write LSB
*	6353	23	INC HL	Increment Adrs.
*	6354	72	LD (HL), D	Write MSB
*	6355	2B	DEC HL	Restore HL
	6356	C09964	CALL BANK ENABL	E Restore Bank St.
	6359	Cl	POP BC	Restore Regs.
	635A	F1	POP AF	3
	635B	C9	RET	Return

The asterisks mark the locations modified.

From BASIC:

POKE 25408, 213
POKE 25424, 193
POKE 25425, 209
POKE 25426, 115
POKE 25427, 35
POKE 25428, 114
POKE 25429, 43

NOTE: The corrections to GET-STATUS and BANK-ENABLE are also required.

FIGURE 6.5-3

BANK ENABLE AND RESTORE STATUS CORRECTIONS

				From BASIC	
BANK ENABLE:	Location	0bj ect	Code	POKE Address	Value
	6499Н	00	NOP	25753	0
	649DH	F3	DI	25757	243
	651 CH	FB	EI	25884	251
RESTORE _ STATUS:					
	654AH 6570H	F3 FB	DI EI	25930 25968	243 251

In both cases, the Disable Interrupt and Enable Interrupt are being done by deleting the preservation of the AF Registers (PUSH AF/POP AF). If your code requires AF to be saved, you must do it prior to calling either of these routines or any other system routines that use them Note also that if you already have the interruption masked when these routines are entered, it will be enabled when they are exitted. If this proves to be a problem, replace the Enable Interruption (EI) instruction with a NOP and do the enable at a more appropriate place in your own code.

- 6.5.6 GET NUMBER- Always returns the Dock Bank # for any memory enabled in the ROM Extension. Unlikely to be a problem because of limited use of the ROM Extension.
- 6.5.7 XFR BYTES- Improperly passes memory select byte for the case where source and destination are in the same bank. This is corrected by setting Location 676AH = 5FH (POKE 26474, 951.

6.6 GENERAL

6.6.1 Pressing ENTER multiple times with an invalid tape command on the edit line (syntax error) causes the system to reset. This is due to overflowing the Bank Status Stack in RAM Chunk 3/7 due to the multiple calls to and from the Extension ROM via the Call Bank code without normal termination (the error causes-a RESTART 8 to be executed out of Home ROM code called from the ROM Extension). It shouldn't take anybody that many tries to get a tape command right, so this is not a real problem, but you may want to keep it in mind. For any call made through the OS RAM services, you should have a corresponding return to keep the structures clean.

- 6.6.2 ON ERR GOTO If a non-existent line number is specified, followed by an error, the system will hang. The ROM code is in an endless loop trying to report the absence of a valid error handler to the non-existent error handler!!! On some errors, you will get an unexpected 0 OK termination showing the line number of your Error Handler. This is because some ROM routines temporarily clear the INTPT Flag (Bit 7 of FLAGS). This flag is set to 0 when checking syntax and set to 1 when executing; if an error is detected while the Flag=0, the error handler code is branched to but is not executed.
- 6.6.3 Parameters to the SOUND command are not fully validated, therefore you can specify a number beyond the valid range for a given operation and not get an error, for example, you can write a value greater than 63 to the Enable Register (Reg. 7), possibly changing the I/O Port used for reading the joysticks from input to output. If you specify a number larger than 255 (FFH), only the least significant byte will be actually written to the Programmble Sound Generator. Access to PSG Reg. 14 (IO-A) used for the Joysticks is also not precluded via the SOUND command.

If you experience difficulty in reading the joystick(s), do a write to PSG Reg. 7 clearing Bit 6 to 0 to guarantee that the joystick path is enabled for input (see Section 4.3). This write can be done by executing a SOUND 7,63 (or any value less than 63).

The INTEGER function for (-65536) gives an incorrect result of -1, and for other cases where the result should be -65536, it gives -1E-38. Since the ROM code cannot be changed, there is no correction.

- 6. 6. 4 If you respond to the SCROLL? message using multiple keys such as Cap Shift/Z or Cap Shift/Symbol Shift, you will get strange results like dumping of the Edit Line with the "C" or "E cursor, display of ROM data, or multiple scrolls. Stick to single key responses and you won't have any problems!
- 6.6.5 When DELETE (Cap Shift/O) is held down to do deletion of characters in the Edit Line, sometimes it outputs the DELETE Keyword instead (it should not do this in auto-repeat mode). This is especially noticeable when the input line is long. Since the ROM code cannot be corrected, you must try releasing and pressing the DELETE key at differing frequencies and you will be able to get past this "Bug".

APPENDIX A

HOME ROM MAP

LINK 1.7			[IATA LIEF	1882 2010	SYNTAX SYNTAX
LOAD MAP			DELREC	1750	LIST
MODULE	ORIGIN	LENGTH	DELEYM	OB7E	10_2
			DEL-DE	174D	LIST
BLOCK	0000	0000	DEL-C:	OBFD	10_2
BASIC	0000	9227	DESLUG DE_HL	GOGO	10_2
KSCAN IO 1	0227 0500	02 D9 0502	DIGIT?	1668 30D9	LIST INOUT
IO_1 IO2	0A02	0302 031B	DIM	2FC0	I DENT
EDIT	ODID	0682	DIVIDE	356E	SUMS
CHANS	139F	0142	DRAW	26DB	GRAPHS
LIST	14E1	02D4	DRAWLN	2813	GRAPHS
AROS Syntax	1785 1945	0190	ÜRAW_L DUMPPR	2810	GRAPHS
SYNTWO	214F	080A 04B4	DYADIC	0A23 1 BDC	IO_2 SYNTAX
GRAPHS	2603	0251	ECHO	Ģ⊜ a3	10_2
EXPRN	2854	041C	EDIT-K	0A82	10_2
I DENT	2070	03 E 9	END?	1B44	SYNTAX
INOUT	3059	0301	ENDSTT	1AB9	SYNTAX
SUMS	33 5 A	032A	ENDTEM	1 B 4 A	SYNTAX
CALC FUNCTS	3684	0437	ERASE ERR2	25D4	SYNTWO
TAPEMSG	3ABB 3089	01CE 0053	ERR2 ERR4	1 P 9 1 1 FC:F	SYNTAX SYNTAX
CH SET	3D00	0300	ERRS	0701	10_1
••=.	2200		ERR6	3560	SUMS
GLOBAL	ADDRESS	MODULE	ERRB	1F29	SYNTAX
			ERRH	237E	SYNTWO
ACS	30 5E	FUNGTS	ERRO	123D	EDIT
ADD ALNUM?	3303	SUMS	E'X CUTE EXP	1AD8	SYNTAX
ALPHA?	304 <u>6</u> 304 B	I DENT I DENT	EXPRN	3ADF 28 54	FUNCTS EXPRN
ANGLE	389E	FUNGTS	FIND-L	16D6	LIST
AROS	1806	AROS	FIND_N	2070	I DENT
ARRAY	3705	GALG	FIX_U	1F23	SYNTAX
AR_LN	17EA	AROS	FI X_U1	1F1E	SYNTAX
AR_NXT	17FF	AROS	FLASHA	160D	LIST
ASN	304E	FUNCTS	FLOAT FOR	3656 1078	SUMS SYNTAX
ATN ATTBYT	3BFD 0710	FUNGTS IO_1	FORMAT	2500	SYNTWO
BEEP	0436	KSCAN	FP2A	3193	INOUT
BORDER	2436	SYNTWO	FP2BC	3160	INOUT
BREAK?	2009	SYNTAX	F_ATTR	28D7	EXPRN
CAT	2508	SYNTWO	FLINKY	29F2	EXPRN
CHCODE	0371	KSCAN	F-PI F_PNT	29E5	EXPRN
CHINIT CHK_SZ	11AA 1FBB	EDIT SYNTAX	F_SCRN	262 4 288 E	GRAPHS EXPRN
CIRCLE	26 79	GRAPHS	GETAL	17CF	AROS
CLCHAN	13BE	CHANS	GETLEL	2D.54	I DENT
CLEAR	1F36	SYNTAX	GET_LN	1324	EDIT
CLEL	133F	EDIT	GET_XY	2660	GRAPHS
CLLHS	08A9	IO_1	GOLSUB,	1F99	SYNTAX
CLOSE GLPR	139F Cm35	CHANS IO_2	GR_COL HIFLSH	2380 2410	SYNTWO SYNTWO
CLR_BC	1F39	SYNTAX	I NGH	11E1	EDIT
CLS	OSEÁ	10_1	ININT	30 F9	INCUT
CLSLB	097F	10_1	INIT	OD3 1	EDIT
COLITM	23A6	SYNTWO	INPUT	222B	SYNTWO
COLOUR	23DE	SYNTWO	INSI	1288	EDIT
CONT	1EE4 3BC 5	SYNTAX FUNCTS	INSA INSERT	0 AE7 12BB	ID-2 EDIT
GP-EC	16E8	LIST	INT	3ACA	FUNCTS
CTRO	371A	CALC	INTDIV	3ABB	FUNCTS

INSEPSENTAN INSEP	0000 2FAF 0A4A 162D 0776 2E70 15C9 11EA 073F 1788 1795 15A1 053A 0566	EXPRN IO_2 SYNTAX KSCAN IO_1 IO_2 LIST LIST SYNTWO EDIT SVNTWG KSCAN EDIT INOUT TAPEMSG IO_1 BASIC EDIT I DENT LIST FUNCTS LIST SYNTAX SYNTAX SYNTAX SYNTAX SYNTAX SYNTAX SYNTAX SYNTAX BASIC CALC EDIT SYNTWO SYNTAX BASIC LIST SYNTWO SYNTAX BASIC LIST SYNTWO SYNTAX BASIC LIST SYNTWO SYNTAX INOUT I DENT KSCAN SYNTWO SYNTAX BASIC GRAPHS GRA	REMGSZ RESET HESTBC RETURN RND ROOM? ROOT RSET RSTSTR R_ATTS SCRL SCRMBLH SELECT SELECT SENDTV SEPRMT SETTLAT SENDTV SETTLAT SHIP SKIPIT SCHOOL STIN STK.A STR.A S	1254 1254 1254 1254 1278 1278 1278 1278 1278 1278 1278 1278	EDIT SYNTAX SYNTAX SYNTAX SYNTAX SYNTAX EALC INOUT INOUT SYNTAX EDIT CALC TINOUT SYNTAX EDIT CALC TINOUT SYNTAX EDIT CALC SYNTAX
P_LFT P_NL	15A1 053A 0566 0554 217E 377F 1 ED4	LIST 10_1 10_1	UPD_K USRRET	02E1 3882	KSCAN CALC
READ RECLEN	1 D97	SYNTaX LIST	PROGRAM BLOCK ENTRY: 0000	4000	BYTES

EXTENSION ROM MAP

LINK 1.7										
LOAD MAP										
MODULE	ORIGIN	LENGTH								
XBASIC	0000	0040								
TAPE	0000	006 8 087F								
INIT	08E7	0409								
CHNG_VID	ODBO	0193								
PASSING	0F43	0047								
BS	OF8A	001E								
GLOBAL	ADDRESS	MODULE	•							
AKEY	QSAA	TAPE								
BLDSCT	09F4	INIT								
CALL_B	0F99	BS								
CHNG_V	0E8E	CHNG_V	TD.							
CLDFIL	0E27	CHNG_V								
EXINIT	08E7	INIT								
GOTO_B	OF8A	BS								
LOAD	05CC	TAPE								
MERGE	06E5	TAPE								
OPDFIL	ODBO	CHNG_V	rn .							
PASSIN	0F43	PASSIN								
RD_BIT	0189	TAPE	_							
RESSCT	OC4C	INIT								
R_EDGE	018D	TAPE								
R_TAPE	OOFC	TAPE								
SAVE	0851	TAPE								
SLVM	OIAB	TAPE								
W_BORD	00E5	TAPE								
W_TAPE	0068	TAPE								
PROGRAM XB		000 BYTES	3							
	-									
DISPATCH	1000	0624	THIS MODU	LE IS CO	PIED TO RAM	6200	(space	reserve	d 6200-68	3FH).
GLOBAL	ADDRESS	MODULE	Relocated	d to RAM	F9CO-FFFFH	when	second	Display	File is	used.
BANK E	6499	DISPATCH								
BS MAX	6315	DISPATCH								
BS SP	65CE	DISPATCH								
CAEL B	65D0	DISPATCH							ORIGIN	LENGTH
CREATE	66E8	DISPATCH				T401	FC .	F7 V T D1	1000	25.00
DISPAT	6200	DISPATCH				TABL	F2:	FIXTBL	1D00	007C
GET CH	644D	DISPATCH						IMPLO	1500	0124
GET NU	645E	DISPATCH						JMPTBL	1EDC	0124
GET_ST	6405	DISPATCH				UNUS	En.		1624	nene
GET_WO	6316	DISPATCH				0003	LU:		1024	06DC
GOTO_B	6572	DISPATCH							107C	0160
GOTO_E	6815	DISPATCH							1010	0100
INT	62AE	DISPATCH								

```
421
                                      *LIST ON
                              422
                                      *INCLUDE NEW_SYSTARD, S
                                        HERE ARE SOME NEW SYSTEM VARIABLE DEFINITIONS
                              424
425
                              426
427
                                     STKSZ
                                                            EQU
                                                                        200H
                                                            EQU
EQU
                                                                       OF5H
OF6H
                                     SAPPRE
                                                                                   ISOUND CHIP ADDR PURT
                              428
                                     HS
                                                            EQU
                                                                        40H
                              430
431
                                     HS_LSN
                                                            EOU
                                                                       80H
                                                            EQU
                                     HS_MSN
                              432
                                                            EGU
                                                                       BNA
                              433
434
                                     ABN
                                                            EOU
                                                                        OACH
                                                                       ABN
ABN
                                                                                   THE REG ADDR
                                     STA_L
CMD
                                                            EQU
EQU
                              435
                              436
                                                                       OC OH
CMB
                              437
                                     STA_G
                                                            EQU
                                    LOWNYD
FREE_BYTES
PRM_OUT
                              438
439
                                                            EQU
                                                                       OCOCCH
                                                                                              TRESET NYBBLE STEERING LOGIC CMD
                                                            EQU
                                                           EGU
                              441
                                     HOR-SEL
                                                                       10
                             443
                                    UPD_K
                                                                       02E1H
                             444
                             446
                                               GLOBAL DISPATCH, INT, NMI, PUT_HORD, GET_HORD
GLOBAL HRITE_BS_REG, READ_BS_REG, OET_STATUS, GET_NUMBER
GLOBAL GET_CHUNK, BANK_ENABLE, GOTO_BANK, CALL_BANK
GLOBAL XFER_BYTES, BS_MAX_BANK, BS_SP
GLOBAL CREATE_BITMAP, MOVE_BYTES
                             447
                             448
                             440
                             450
                             451
452
                             453
454
455
456
                                       DISPATCH (SVC_CODE: PASSED ON STACK)
                                           SVC_CODE IS A 16 BIT QUANTITY. BIT 15 IS USED AS A JUMP FLAG: I SET, THE DISPATCHER WILL DO A GOTO_BANK TO THE SPECIFIED ROUTINE, OTHERWISE IT WILL DO A CALL_BANK.
                             457
                             458
                             450
                             460
                             461
                                                           EQU
                                                                      1FFFH
                                   LAST_EXT_SVC
                             462
                                                           EQU
                                                                      13
                                                           ECU
                             444
                             465
                             466
467
 6200
                                                           ORG
                                                                      6200H
                             468
469
 6200
           PD210000
                                  DISPATCH
                                                           LI
 6204
                            470
471
           DD 39
                                                           ADD
                                                                      IX. SP
                                                                                             : IX = SE
           65
F5
65
 6206
                                                           PUSH
                                                                                              PRESERVE A WORD ON THE STACK
 6207
                            472
473
                                                                                             COAVE REGS
 6200
                                                          PUSH
                                                                      M
 6209
620A
           05
E5
                             474
                                                          PUSH
PUSH
                                                                      Œ
                                                                      HŁ.
 620B
           DDSE02
                             476
                                                           LD
 620E
6211
           DD5603
AF
                             477
                                                           LD
                                                                      D. (IX+3)
                                                                                             TDE = SVC_CODE
                                                           XOR
                             478
           CB23
 6212
                             479
                                                                     IDE = 2+DE
IA = JUMP FLAG
HL, LAST_EXT_SVC
L
                                                                      Ε
 6214
           CB12
                             420
                                                          RL
 6216
6217
           17
           210000
                             482
 621A
                             493
                                                           SLA
621C
621E
           CB14
                            484
                             425
                                                           AND
           ED52
 621F
                            496
487
                                                           SBC
                                                                      HL, DE
                                                                                             I COMPARE HL AND DE
6221
6223
6226
           3015
                                                          UR
LD
                                                                      NC. D_EXT
HL. LAST_RAM_SVC
                                                                                             TIF DE CE HL
          211200
                            488
                            480
                                                           SLA
6228
622A
          CB14
                            490
                                                          RL
                            491
                                                          ANTI
622B
622D
          ED52
                            492
                                                          SBC
                                                                      HL, DE
          390F
                            493
                                                          LD
                                                                     C. D_HOME
9, 255
622F
6231
6234
6236
           OAFF
                                                                                             THERE FOR RAM-BASED SERVICES
          CD0564
                            495
                                                                      GET_STATUS
                                                                                             IGET STATUS OF HOME BANK
          06FF
180A
                            496
                                                          LD
JR
                                                                      B. 255
                                                                                             IBC - HOME BANK / HORIZ-SELECT
                            497
                                                                      D_SAVE
6238
623A
          OSFE
OSFE
                            498
                                  D_EXT
                                                          ı D
                                                                     8. 254
C. OFEH
                                                                                             THERE FOR EXT. ROM BASED SERVICES
                            499
500
501
623C
623E
          1804
06FF
                                                                     D_SAVE
B, 255
                                   D_HOME
                                                          LD
6240
6242
6243
6244
6247
6248
                                                                                            I SET BANK_ENABLE PARMS FOR HOME
          0E00
                            502
                                                         LD
PUSH
PUSH
                                                                     C. O
          F5
C5
21FF1F
                            503
                                   D_SAVE
                            504
505
                                                                     BC
                                                                                             ISAVE JUMP FLAG AND BANK_ENABLE PARMS
                                                                     HL, JMPTBL
                                                                                             ICALC. ADDR OF TABLE ENTRY
                            506
                                                          SCF
          E052
                            507
508
                                                          SPC
                                                                     HL. DE
          OSFE
                                                          LD
                                                                     B. 254
GET_HORD
624C
          CD1663
                            509
                                                          CALL
                                                                                            TREAD TABLE ENTRY
624F
6250
6251
                            510
          E₽
                                                          ΕX
         C1
F1
                           511
                                                          POP
                                                                                             RESTORE JUMP FLAG, ETC.
6252
6253
6255
6258
          47
                                                         AND
          291F
                           514
515
516
                                                                     Z. D_CALL
(IX-2), C
(IX-1), B
         DD71FE
DD70FF
                                                         ĽĐ
                                                                                            1PUT BANK# AND HOR-SEL ON STACK
                                                         LD
625B
625E
6261
          DD6E00
DD6601
                           517
518
                                                                     L. (IX)
H. (IX+1)
                                                         LD
                                                                                            ISAVE RET ADDR
          DD7403
                                                                     (IX+3). H
                                                                                            IPUT RET ADDR BACK ON STACK
```

```
6264
6267
                             520
521
522
                                                                      (IX+2), L
(IX+1), D
(IX), E
           007502
           DD7201
                                                          LD
LB
POP
POP
POP
                                                                                             ISET UP STACK FOR GOTO_BANK
                                                                                             FRUT ADDR ON STACK
  626A
           007300
  62:6D
                             523
           Εi
  626F
 62.6F
6070
6071
                                                                      [#C
           007265
                             527
                                                                                             THERE IF JUMP FLAG NOT SET
                                                          CALL
                                                                      GOTO, PANK
 6274
6277
                                                                                             TSET UP STACE FOR CALL BANT THE PET ADDR IN PROPER LOC
           DDAFOO
                             578
                                    DICALL
                                                          LD
                                                                      L. (IX)
H. (IX+1)
           DD6601
 627A
627B
627E
6281
                             530
                                                          PUSH
                                                                      14.
           DD6E04
                             531
                                                                      L. (TX+41
                                                          LD
           DD6605
DD75FE
                             532
533
                                                          LD
                                                                      H. (1x+5)
(1x-2), L
                                                                      (IX-1), H
L, (IX+6)
H, (IX+7)
(IX), L
(IX+1), H
(IX+2), C
 6284
6287
                             534
535
           DD74FF
                                                           LD
                                                                                             IPUT PRM_OUT IN PRPER LOC
           DD6E06
                                                          LD
 628A
628D
6290
6293
           DD6607
DD7500
DD7401
                             536
537
                                                          ı.D
                                                           LD
                             538
539
                                                          LD
           DD7102
                                                                                             FPUT BANK & HS ON STACK
 6296
           DD7003
DD7304
                             540
                                                           LD
                                                                      (1x+3). B
                             541
                                                          LD
                                                                      (11+4). E
                                                                                             LEUT ADDS ON STACK
 629C
629F
                            542
543
           007205
                                                                      (1X+5) . D
                                                                      HL
(IX+6), L
           E١
                                                          POF
 62A0
           DD7504
                             544
                                                          LD
 62A3
62A6
           DD7407
                             545
                                                           LD
                                                                      (1x+7), H
                             546
                                                          POP
                                                                      HL
DE
BC
AF
                                                                                             IRESTORE REGS
           Εı
 62A7
62A8
                            547
548
                                                          POP
POP
           DI
           CI
           F1
CDD065
                            549
550
                                                          POF
CALL
 62A9
 62AA
                                                                      CALL_BANK
                                                                                             THERE IF JUMP FLAG NOT SET
                             551
                            552
                            553
554
                                                          IRST 56: HERE TO SERVICE INTERRUPT BY READING KEYPOARD
                             555
62AE
62AF
          F5
E5
                                    INT
                                               PUSH AF
                            557
                                               PUSH HL
 62B0
           DDE5
                             558
                                               PUSH
                                                          IX
                            559
 6282
6285
                                                          HL. O
           210000
                                               LD
                             560
                                               ADD
 62B6
62B7
           D5
                            561
                                               PUSH
                                                          DE
                             562
                                               LD
           3A1563
                                                          A. (PS_MAX_BANK)
 62BB
62BB
           SE
                            563
                                               LD
                                                          E. A
           1600
                            564
                                                          D. 0
                                               INC
INC
                                                          DE
DE
 A2RD
                            565
                            566
 6.2BE
 62BF
6200
           A7
                                               AND
           ED52
                                               SPC
                            548
                                                          HL, DE
6202
6203
                                               EX
           ÉR
                            569
                                                          DE, HL
           DD210000
                            570
                                                          1X. 0
6207
6209
           DD19
                            571
                                               ADD
                            572
                                                          DE
SP. IX
           D1
                                               POP
           DDFO
                                               LD
 6200
620F
                                               CALL
PUSH
           CB1E65
                            574
                                                          SAVE_STATUS
                            575
           C5
O&FF
                                                          BC
                                                          B. OFFH
GET_STATUS
B. OFFH
A. C
 6200
                            576
                                               LD
           CD0564
 62D2
                             577
                                               CALL
6205
6207
           96FF
79
                            578
579
                                               LE
                                               LD
6208
620A
           E&F8
                             580
                                               ANE
                                                          OFEH
           4F
                            531
                                               1.11
                                                          r. a
62DB
          CD9964
                                                          PANK_ENABLE
                            562
                                               CALL
62DE
62DF
                            583
584
                                              POP BC
LD HL. (FRAMES) INCH INCREMENT FRAME COUNTER
          C1
2A7850
62E2
62E3
          23
227850
                            585
586
                                              INC HL
LD (FRAMES).HL
62E6
          70
85
                            587
                                               LD A.H
                            588
                                               OR L
          2003
FB3440
                            589
590
                                              JR NZ:LIT3
INC (IY-Y+FRAME2)
62E8
62FA
62ED
          05
05
                            591
592
                                  LITS
62EE
62EF
                                              PUSH DE
          CDE 102
                                              CALL
                                                         UPD_K
62F2
62F3
          Di
                            594
                                              POF DE
                            595
                                              POP RC
          C1
                            596
                                  PHLAF
                                                          FUUNP HERE TO POP HL. POP AF, ENABLE INTERRUPTS & RETURN
62F4
          00210000
                            597
                                              LD
                                                         IX. O
62F8
62FA
62FD
                                              ADD
CALL
INC
                            598
599
          CD4665
                                                         RESTORE_STATUS
          DD23
                            600
                                                          IX
62FF
          DDF9
                            601
602
                                              LD
POP
                                                          SP, IX
6301
          DDE 1
                                                         IX
6303
6304
          E1
                            603
                                              POP HL
          F1
                            604
6305
                            605
                                              RET
6306
          Co
                            404
                            607
                                                         THERE TO SERVICE NON-MASKABLE INTERRUPT
TIF (NMIADD) = 0 THEN RETURNS STRAIGHT AMAYT
TELSE, JUMPS TO (NMIADD) WITH HL (ON TOP), AF & RETN ADDR ON
THE STACK.
                           609
                            611
         F5
E5
2AR050
70
R5
6307
                                  NHI
                                              PUSH AF
                           613
614
                                              PUSH HL
LD HL (NMIADD)
6308
6309
                                              LD A.H
OR L
JR NZ.LNI3
JP (HL)
6300
                            015
6300
                           616
          2001
E9
630E
                            617
                                                                     HIF NO USER-SUPPLIED SERVICE ROUTINE
6310
                           618
```

```
6311
          E١
                                  LNI3:
                                             POF HL
 6312
                           621
622
623
624
                                             POF AF
 6313
           ED45
                                             RETN
 6315
                           625
626
                                  PS_MAX_BANK
                                                        DEFS
                                                                             ITHIS IS A COPY OF MAX_BANK
                           627
628
                                      GET_MORD (ADDR: HL. BANFERS MORDISHL)
          F5
05
16
                           630
                                  GET_MORE
                                                       FUSH
                                                                                        I SAVE REDS
6317
6318
                                                        PUSH
                           692
633
                                                       PUSH
CALL
                                                                  Œ
6319
6310
          CD5064
F5
                                                                  DET. NUMBER
                                                                                        LIGHT BANK & OF CHINER OF AUDIO
                           634
                                                        PUSH
 6010
          50
                                                                  E H
                           6.
                                                       U.D
 631E
          47
                           636
                                                       LD
                                                                  B. A
631F
6322
5323
6326
6327
6328
          000564
05
                           637
630
633
                                                       CALL
                                                                   GET_STATUS
                                                                                        TOET STATUS OF DWNER
                                                       CALL
CFL
          004064
                                                                  GETLICHUNK
                                                                                        ISET HS FOR GETTING AT AFER
          2F
42
                           640
                                                                                        TEUT IN ACTIVE LOW FORMAT
                           441
                                                       LD
                                                                  B. D
          4F
                           642
643
                                                       LTI
CALL
                                                                  C, A
BANK_ENABLE
6329
6320
          009964
5€
                                                                                        TENABLE ADDR
                           644
645
                                                       LD
                                                                  E, (HL)
          23
 6320
                                                                  HL
                                                                  Di (HL)
HL
600E
630F
                           646
647
                                                       LD
DEC
          2B
EB
6330
                           648
649
                                                       EX
POP
                                                                  DE, HL
6331
6332
          C1
F1
                                                                  BC
                           450
                                                       POP
LD
                                                                  AF
6333
                           651
                                                                  B. A
6334
6337
                          652
653
                                                       CALL
                                                                                        TREENABLE CHINER OF ADDR
          CD9644
                                                                  BANK_ENABLE
          Di
                                                                  DE
6338
6339
          C1
F1
                          654
655
                                                       POP
633A
                           656
                                                       RET
                          457
458
                           659
                                    FUT_HORD (HORD: DE. ADDR: HL. BANK: B)
                          4.60
4338
                          662
663
                                 PUT_WORD
                                                       PUSH
                                                                                        I SAVE REGS
6330
6330
                                                       PUSH
                                                                  BC
          CDSE64
                          664
                                                       CALL
                                                                  GET_NUMBER
                                                                                        IGET BANK I OF CHINER OF ADDR
6340
6341
6342
          50
47
                                                                  D, B
                           666
                                                       LD
                          667
                                                       LD
CALL
                                                                  B. A
6343
          CD05&4
                           668
                                                                  GET_STATUS
                                                                                        IGET STATUS OF CHINER
6346
6347
634A
                          669
670
                                                       PUSH
          C5
          CEI4D64
2F
42
                                                                                        ISET HS FOR GETTING AT ADDRIPUT IN ACTIVE LOW FORMAT
                                                                  GET_CHUNK
                          671
672
                                                       CPL
634B
                                                       LD
                                                                  B. D
C. A
6340
6340
6350
6351
                          673
674
675
                                                       LD
CALL
          4F
         CD9964
73
23
                                                                  HANK_ENABLE
                                                                                       TENABLE ADDR
                                                       LD
                                                                  (HL), E
                          676
677
                                                                  HL
(HL), D
                                                       INC
6352
6353
6354
6355
         72
2B
C1
                                                       LD
                                                       DEC
                          678
679
                                                                  HL
BC
         F1
                                                       PCP
                          680
6356
6359
          CD9964
                          681
                                                                                       TREENABLE OWNER OF ADDR
                                                                  BANK_ENABLE
          C1
                          AB2
                                                       POP
                          683
                          684
635
635B
         C9
                          684
687
                                     WRITE_BS_REG (REG_AUDR: D. REG_DATA: E)
                          638
                          1.89
635C
635D
635E
635F
         F5
C5
E5
                                                                                       ISAVE REGISTERS
                          690
                                 WRITE_BS_REG
                                                       PIKH
                                                                  ΔF
                          691
692
693
                                                      PUSH
                                                                 BC
HL
         62
                                                       LD
                                                                 H. D
6360
6362
         2E00
3A00C0
                          695
                                                      LD
                                                                                       THL = MEMORY MAPPED ADDR
                                                                     (LOWNYB)
         FS
7E
                          696
6365
                                                       PUSH
6366
6367
6368
                                                                 A. (HL)
                                                                                       SAVE (HL)
                                                       LD
                          698
699
700
701
         F5
3E07
                                                      LD
OUT
                                                                 A, 7
636A
636C
         DBF4
                                                                 (SADDPT), A
A. (SDATPT)
                                                                                       I SAVE VALUES OF SOUND REGS 7 AND E
                                                       IN
                          702
703
704
636E
                                                      LD
LD
OUT
                                                                 B. A
A. OEH
         47
635F
         SECE
6371
         D3F5
                                                                 (SADUPT), A
                          705
706
707
708
6373
6375
         DBF6
                                                                 A. (SDATPT)
                                                       IN
                                                      LD
6376
6378
         3E07
                                                      LD
                                                                                       ISET IOA CHANNEL TO OUTPUT
                                                                 (SADDPT), A
                          709
710
711
712
637A
637C
         3E40
D3F6
                                                      LD
OUT
                                                                 A. 40H
(SDATPT). A
         SEDE
DOF5
                                                      LD
                                                                 A. CEH
(SADDPT). A
637E
6330
                          713
714
715
6392
                                                       XOR
         D3F6
                                                                  (SDATPT). A
6383
                                                      OUT
6385
                                                      LD
         3E02
         3200C0
7B
                          716
717
                                                                  (LOHNYB), A
6387
                                                      LD
                                                                                       TRESET NYBBLE STEERING LOGIC
633A
                                                                 A. E
                                                      LD
938B
         77
CB2F
                                                                  (HL). A
                                                                                       :WRITE LSN OF DATA
                                                       SRA
4.33C
```

```
638E
           CB2F
                                                          SRA
                                                                     A
 6390
6392
6394
                            721
722
723
                                                          SRA
           CB2F
77
                                                          SEA
                                                          LD
                                                                     (HL). A
                                                                                            INRITE MSN OF DATA
  A 225
            DE 0.7
                            724
725
                                                          LD
OUT
                                                                     A, 7
(SADDPT), A
                                                                                            RESTORE SOUND REGS
  6:27
 6399
639A
639C
           78
                            726
727
                                                          LD
OUT
                                                                     (SDATPT). A
                                                                     A. (SEH
(SADDPT), A
                            728
729
                                                         LD
            SEGE
 4.3°0E
           D3F5
                                                         LD
 6-640
                            730
 6 3A1
           D3F6
                            731
                                                                     (SDATPT). A
 63A3
                                                          POP
                                                                     AF
 6.344
           77
                            733
734
                                                         LD
FOP
                                                                     (HL), A
                                                                                           IRESTORE (HL)
 6.A5
                                                                     Æ
                            735
736
737
738
                                                         LD
F(IP
                                                                                           (RESTORE (DEDOOR)
TRESTORE REGISTERS
 50A6
           320000
                                                                     (LOUNYB) . A
 4.3A9
           Εı
                                                                     HL
BC
AF
 63AA
63AB
           0.1
                                                         POP
           Fi
 A AL
           6.0
                            7 39
                                                         SET
                            740
                            741
742
                                       READ_BSURES (LINLADDR: 10 MEN_ADDR: E: DYTE_DATA: E)
 63AU
                            744
                                   READLPS LREG
                                                         FUSH
                                                                    ΔF
                                                                                           ISAVE REGISTERS
 6:4E
          ρ÷.
                            744
                                                         PUSH
                                                                    ₿¢
HL
                                                         FILEH
          4.
 6.360
                                                                    H. D
                                                         Lti
 60H3
63P3
           2E00
3A0000
                                                                                          THE = MEMORY MAPPED ADDR
TSAVE (GEOGOH)
                            749
750
751
752
759
759
755
                                                         i.o
                                                                        (LOWNYE)
                                                         LD
                                                                    A.
63B6
63B7
           F5
7E
                                                         PUSH
                                                                    A, (HL)
                                                         LD
                                                                                           ISAVE (HL)
                                                                    AF
A, 7
                                                         PUSH
 6.289
6.288
           3E07
00E5
                                                         LD
OUT
                                                                    (SAUDET). A
                                                                                          ISAVE VALUES OF SCIUND REGS 7 AND E
                            756
757
 6380
6386
                                                                    A. (SDATPT)
E. A
           DEF
                                                          N
           47
                                                         LD
                            758
750
 6300
6002
           SERE
                                                         LD
                                                                    A. OEH
                                                         CUIT
                                                                    (SADDFT), A
A. (SDATFT)
           113F %
6304
6306
                            760
761
762
763
765
765
760
767
                                                         IN
           4F
                                                         LD
                                                                    C. A
6307
6308
                                                         PUSH
                                                                    BC.
                                                                    A. 7
(SADDPT), A
           2E 0.7
                                                         LD
OUT
                                                                                          ESET TOA CHANNEL TO OUTPUT
           DOFS
 4 35 E
           3E40
                                                         LĐ
                                                                    A. 40H
(SDATPT). A
 630E
                                                         OUT
63D0
63D0
           3E OE
                                                        LD
OUT
                                                                    A. DEH
(SADDPT), A
          D3F5
                            768
769
770
63D4
63D5
           ΔF
                                                         XCIE
          D3F6
                                                                    (SDATPT). A
                                                         OUT
                                                                    A. 2
(LOWNYB), A
6307
6309
                           771
772
773
774
775
776
777
778
779
           SEOF
                                                         LÐ
          320000
                                                                                          TRESET NYBBLE STEERING LOGIC TREAD LSN OF DATA
                                                         LD
 6310
                                                         LD
                                                                    A. (HL)
4.300
          EAGE
                                                         ANT
63UF
                                                                    C. A
                                                         LI
                                                        LI
LI
SLA
63E0
          63
7E
                                                                    H. E
63E1
                                                                    A. (HL)
                                                                                          LREAD MSN OF DATA
63E2
63E4
          CB27
CB27
                                                         SLA
                                                                    A
6.3E 6
                            780
                                                         SLA
                           781
782
                                                        SLA
OR
ARES
          CB27
                                                                    Α
L3EA
          Ē1
                                                                    c
63EB
                           783
784
          ≪F
                                                         LD
                                                                    E. A
                                                                                          RETURN BYTE DATA IN E
          C1
                                                        POP
                                                                    BC
63ED
63EF
          3E07
                           785
786
                                                         LD
                                                                                          FRESTORE SOUND REGS
                                                                    (SADDPT). A
          D3F5
                                                        OUT
63F1
63F2
                           787
788
                                                        LD
OUT
          D3F6
                                                                    (SDATET). A
                           789
790
791
63F4
63F6
           SEGE
          DBES
                                                        CHIT
                                                                    (SADDPT), A
63F8
63F9
                                                        LĐ
                           792
793
794
795
          D3F 6.
                                                                    (SDATET). A
                                                        OUT
63FB
          F1
                                                         FOF
                                                                    (HL), A
4.3FC
                                                        L D
                                                                                          FRESTORE (HL)
6.75° D
                                                        FOF
          F1
                                                                    AF
         320000
E1
                           797
797
630E
                                                        Lii
                                                                    (LOWNYED, A
                                                                                           FRESTORE (DECOOM)
6401
                                                                                           IRESTORE REGISTERS
                                                        FUF
                                                                   HL
6402
                           798
799
          C1
F1
                                                        POP
                                                                   ĐC
AF
6403
1.4114
          63
                           800
                                                        RET
                           801
                           803
803
                                      GET_RANK_STATUS (BANK) B: STATUS : B: HORIZONTAL_SELECT: ()
                           804
                           805
         F5
D5
78
FEFE
6405
                           804
                                  GET_STATUS
                                                        PUSH
PUSH
                                                                                          ISAVE SAVE REGS
                                                                   DE
A. B
OFEH
6406
                           307
                           808
808
6407
                                                        LD
6408
6404
         282E
FEFF
                           810
                                                        JR
CP
JR
                                                                   Z. GS_EXT
                                                                                          LIF BANK = 254
LADE
                           811
812
                                                                   OFFH
640E
                                                                   Z. DS_HOME
          261 D
                                                                                          LIF BANK = 255
6410
          Δ7
                           813
                                                        AND
4411
         291F
1680
                                                                   Z OS_DOCK
                                                                                         TIF BANK = 0
THERE IF EXP. BANK
                           814
                                                        JK
6413
6415
                           815
                                                        LD
                                                                   D. BNA
                           816
817
                                                                   E. B
                                                        LD
6416
          CD5063
                                                                   WRITE_BS_REG
                                                        CALL
                           616
619
          1640
                                                        LD
                                                                   D. HS_LSN
641B
          1E80
                                                                   E. HS_MSN
```

```
6.4111
                            820
821
            CDADAS
                                                        CALL
                                                                  READ_BS_REG
                                                                                       FREAD HS
            7 H
2F
   6420
                                                       LD
                                                                  A. E
   6421
                            821
                                                        CFL
   6422
                                                                  C. A
D. STA_L
E. STA_G
                            803
                                                       LD
   64:3
            1640
                            824
   6425
            1ECO
                            825
                                                       LD
   6427
            CDAD63
                            826
827
                                                       CALL
                                                                  READ_BS_REO
                                                                                       TREAD STATUS NYBBLES
   642A
                                                       LD
JR
                                                                  B. E
GS_EXIT
  642B
642D
6430
6432
            1810
            010000
                            629
                                  OS_HOME
                                                       LĐ
                                                                  BC. O
GS_EXIT
                                                                                       FRETURN O FOR HOME BANK STATUS
                            830
                                                        JR
            DBF 4
                            831
                                  GS_DOCK
                                                                  A. (DKHSPT)
                                                                                       FRETURN DOCK BANK STATUS
  6434
6435
                            832
                                                       CPL
            47
                            833
                                                       LD
                                                                  P. A
   6436
            GEOO
                            634
                                                       LD
                                                                  c. o
                                                                 GS_EXIT
A. (HREXPT)
BOH
  6436
6436
            1810
                                                       JR
IN
            DHFF
                            836
                                  OSLEXT
  6430
6436
            EARO
                                                       AND
                                                                                       ICLEAR ALL BITS EXCEPT BIT 7
            2F
                            836
   643F
            07
                            836
                                                       RLCA
                                                                                       IPUT ACTIVE LOW BIT IN BIT ZERO
                           840
841
  6.440
            47
                                                       LĐ
  6441
            DHF 4
                                                       IN
CFL
                                                                 A. (EKHSPT)
           2F
E&fil
  4443
                            842
  4444
                            P.4 3
                                                       ANI
  6446
           ₽1
47
                                                       OR
  6447
                            5.4ª.
                                                       L D
                                                                 H. A
  6448
            OE OO
                                                                 C.
LE
                                                       LTe
                                                                    0
  644A
644B
                            €.47
           [1]
F 1
                                  65_EX11
                                                                                      TRESTORE DI C
  6440
                           949
850
                           652
853
                                    GET_CHUNC (ADDR: HLE MASHE A)
                           354
355
356
356
  .441
           65
                                 GET_CHUNI
                                                      FUSH
                                                                                     TTAVE B
TOHON' NUMBER = HIGH 3 BITS OF
THE SO SHIFT HERICHT 5 BITS
 644E
          .7€
-0605
                                                      LD
LD
                                                                A. H
                           957
 6451
6453
6455
          B.3F
                           ୍ଟ୍ରେମ
ଓଟ୍ଲବ
                                                      SAL
DUNZ
                                 GC_SHIFT
           10FC
                                                                 GC_SHIFT
           3C
47
                           860
                                                       INC
                                                                                     TCHEATE MASK BY ROLLING A 1 LEFT CHUNK NUMBER+1 TIMES. THE 1 COMES FROM THE CARRY
 5456
5457
                          961
                                                      L D
                                                                P. A
          AF
27
                          362
863
                                                      XCM
SCF
 4458
4459
                                                                                      I FLAG
          17
                          864
865
                                 GC_ROLL
                                                      RLA
 645A
645C
           i #D
                                                      DUNZ
POP
                                                                CIC_ROLL
          C1
                          366
967
                                                                                     RESTORE R
                                                      RET
                          868
                          869
                                    GET_BANK_NUMBER (ADDR! HL! BANK_NUMBER! A)
                          971
                          372
 645E
          05
05
                          873
                                 GET_NUMBER
                                                      PUSH
                                                                                     ISAVE REGS
 645F
                          874
                                                      PUSH
                                                                DE
 6460
          CD4064
                          975
                                                      CALL
                                                                GET_CHUNK
 4463
                          976
977
          4F
                                                      LD
6464
6467
          3A1563
                                                      LD
                                                                A. (BS_MAX_BANK):GET LARGEST BANK NUMBER
          A7
                          873
                                                      AND
 6468
          2804
                          879
                                                     JR
LD
LD
                                                                Z. ON_RD_DOCK
                                                                                     TIF NO EXP. BANKS
646B
                         880
                                                                B. A
E. B
                                CHLCHECK
                                                                                     I SEARCH ALL EXP. BANKS
 646C
          CD0564
                          982
                                                     CALL
                                                                GET_STATUS
 545F
                                                     AND
          AL
                          683
6470
6472
         2923
10F7
                          884
                                                                Z. ONLEXP
                                                                                     FOUND THE CHUNK, SO EXIT LOOP
                                                     DUNZ
IN
CPL
AND
                          685
                                                                GN_CHECK
6474
6476
         DBF 4
2F
                                ON_RD_DOCK
                                                               A. (DKHSPT)
                                                                                    INOT IN EXP. BANKS, SO CHECK DOCY
                         887
         2818
6477
6478
                         888
                                                               C
Z, GN_DOCK
                                                     UR
DEC
647A
647B
          ŌĎ
                                                                                    TIF CHUNK > 1. THEN CAN'T BE IN EXT.
          2011
                         891
892
                                                     JR
IN
                                                                NZ, GN_HOME
647D
647F
         LIBFF
                                                                A. (HREXPT)
                                                                                    ICHECK IF IN EXT. BANK
         EABO
                         893
                                                     AND
                                                                80H
4481
                         374
                                                     LD
         DEF4
                         895
896
4482
                                                               A. (DKHSPT)
6484
         E601
                                                     AND
                         897
898
6436
         Œ
                                                     RRCA
4487
         A2
                                                     AND
                                                               D
6488
648A
         2804
                                                     .IR
                                                               Z. CN_HOME
                                                                                    INOT IN EXT. BANK
          3EFE
                         900
                                                     LD
                                                               A. OFEH
                                                                                    LIN EXT. BANK, SO RETURN 254
648C
         1808
3EFF
                         901
                                                     JR.
                                                               GN_EXIT
643E
                         902
                               GN_HOME LD
                                                                          LIN HOME BANK, SO RETURN 255
4490
         1804
                         903
                                                               GNLEXIT
                                                     . IR
                         904
905
4492
         Δ.
                               GN_DOCK
                                                     XOR
                                                                                    FROUND CHUNK IN DOCK. SO RETURN O
6433
         1801
                                                     150
                                                               ON. EXIT
6495
6496
6497
                         905
907
         73
                               GN_EXP
                                                    LD
POP
                                                               A, B
                                                                                    IRETURN EXP. BANK NUMBER
         Ď1
                               GN_EXIT
                                                               DE
BC
                                                                                    IRESTORE REGS
         C1
                         208
                                                    POP
                         900
                                                    RET
                         910
                         911
912
913
                                   BANK_ENABLE (BANK: B. HORIZONTAL_SELECT: C)
                         914
915
         F5
05
16
E5
6499
649A
                               BANK_ENABLE
                                                              AF
BC
DE
                                                    PUSH
                                                                                    ISAVE REGISTERS
                                                    PUSH
PUSH
647B
649C
                                                              HL.
H. B
                         918
                                                    PU:SH
449D
                         919
```

LD

```
649E
             3A1563
                              920
                                                                      A. (BS_MAX_BANK) FOET LARGEST BANK NUMBER
    64A1
             A7
                              921
                                                           AND
    6442
             2:311
                              922
923
                                                            JR
                                                                      Z. BE_SKIP
                                                                                             I IF NO EXP. BANKS
    4444
                                                           LD
                              924
925
926
927
928
929
    6446
             1500
                                                           LD
                                                                      E. O
    6.4A8
             CD5C63
                                                           CALL
                                                                      HRITE_BS_REG
             16A0
F5
   64AB
                                                           LD
PUSH
                                                                      D. HSP
    44AD
   64AE
64AF
             79
2F
5F
                                                           LD
CPL
                                                                      A. C
   54B0
                                                           LD
                                                                      E, A
   64B1
                              931
932
   64B2
             005063
                                                           CALL
                                                                      WRITE_BS_REG
                                                                                            ITURN OFF APPROPRIATE BITS OF I ALL EXP. BANKS
                             933
934
   6485
                                    BE_SKIP
                                                           LD
   4.4B6
            Δ7
                             935
                                                           AND
   6487
             2011
                             736
                                                                      NZ. BE_NTDOCK
   44H9
                              937
                                                          LD
CP
                                                                     A+C
OFFH
   64RA
            FEFF
                             938
939
   64BC
64BE
                                                                     Z: BE_EXT_OK
A: (HREXPT)
7: A
                                                           JR
            DREE
                             940
                                                           IN
                                                                                            THERE FOR DOCK
   64CO
             CBBF
                             941
                                                           RES
   6402
5404
            03FF
79
                             942
                                                          OUT
                                                                     (HREXPT). A
                             943
944
                                    BE_EXT_OK
                                                          LD
                                                                     A. C
   6465
             :F
                                                          CPL
   4416
            D3# 4
                             945
                                                          OUT
                                                                     (DKHSPT). A
                                                                                            FENARLE DOCK
   6408
6408
            194F
                             946
                                                          UR
LD
CP
                                                                     BE_EXIT
A. B
OFEH
                             947
                                    BE_NTDOCK
                                                                                            ICHECK IF EXT.
   64CB
            FEFE
                             94<del>8</del>
   4CD
                                                          JR
IN
            2010
                             949
                                                                     NZ, BE_NTEXT
A. (HREXPT)
  64CF
64D1
            DOFF
                             250
                                                                                           THERE FOR EXT.
                             951
952
953
954
            17
                                                          KLA
   6402
            0819
                                                          RR
  A404
   4405
            DOFE
                             354
  6406
                                                          COST
                                                                     (HREXPT). A
   54DS
            CB7F
                                                                     7. A
            2003
DBF 4
0897
                             957
958
  A4614
                                                                    NZ DELSET
A. (DEHSPT)
  44DE
                                                          1M
                             050
                                                          RES
                                                                    0. 5
            D3E4
  64EO
                             960
                                                                     (DE HERT), A
                                                          OUT
  64E2
            1035
                             961
                                                          JK
IN
                                                                     PE_EAST
           DBF4
CBC2
                                                                    A. (EMHSET)
                                   FELSET
  64E6
                             043
                                                          SET
 64ES
GAEA
            [13F 4
                             964
                                                                    (IN'HSPT). A
                                                         CAUT
           18:20
0864
                             465
                                                         JF:
IN
                                                                    PE_EXIT
                                   PC_NTEXT
  64EC
                                                                    A. (DIHSPT)
                                                                                           IDISABLE DOCE
  64EE
                            41.7
 64EF
64FÜ
                            968
                                                                    E. A
                                                         LD
                            94.0
                                                         LÞ
 64F1
                             970
                                                         CPL
OR
                            971
972
                                                                    E
  44F 3
                                                         CPL
 4.4F4
           DREA
                            975
                                                                    (DECHSET), A
 64F 6
           CF41
                            974
                                                                    0. C
NZ. BE_CHIC_HOME
A. (HREXPT)
7. A
                                                         FIT
                            975
976
977
           2000
DBFF
 KAFE
                                                          .
 4.AFA
                                                         1N
                                                                                          IDISABLE EXT.
 64FC
           CHHF
                                                         RES
 (AFE
           DIRE
                            978
979
                                                         OUT
                                                                    (HREXPT),
 6500
6502
           DRF 4
                                                         1N
                                                                    A. (DI.HSPT)
           CB97
                            990
                                                         RES
6504
6506
6506
(507
(509
6508
           1/3F4
                            981
                                                                    (DICHSET), A
                                                         CHIT
                            983
                                   BE_CHI._HOME
                                                         LI
                                                                                          TCHECK IF HOME
           FEFF
                            ୍ଟ୍ର
                                                         CF
                                                                    OFFH
           280F
                            994
                                                         æ
                                                                                          IIS HOME, SO DONE INFITE NEW EXP. BANK STATUS
                                                                    Z. RE_EXIT
           16.50
                            985
                                                         ĹĐ
                                                                   D. BNA
 650D
                                                        LD
 650E
          005063
                            987
                                                         CALL
                                                                    WRITE_BS_REG
6506
6511
6512
6514
6515
6516
6510
6510
6510
          1640
79
                            දෙන
                                                        LD
LD
                            କଥିତ
କଥିତ
                                                        CPL
          CDSC43
                                                        CALL
                                                                    WRITE_BS_REG
                           903
                                  BE_EXIT
                                                                   HL
DE
EC
                                                                                          IRESTORE REGISTERS
          Ľ1
                           994
                                                        FOF
          ( I
F I
                                                        POF
                           994
                                                                   AF
                                                        RET
                           908
                         1000
1001
                                      SAVE_BANK_STATUSES (STATUS_ADDR: IX)
                          1002
                                               PUSHES THE STATUS OF ALL BANKS ON THE STACK
                          1003
                          1004
651E
651F
6520
6521
6524
6525
6526
6526
          65
65
16
                          1005
                                  SAVE_STATUS
                                                        PUSH
                                                                                         I SAVE REGS
                          1000
                                                        FUSH
                                                                   BC
DE
                         1007
                                                        FILEH
          DBFF
                         1008
                                                                                         ISAVE EXT. BANK STATUS
ILEAVE BITS 0-6 ALONE! NOPS PLIT IN
I TO MEET ADDRS THE SAME
                                                        IN
                                                                   A. (HREXPT)
          e ice
                          1005
                         1010
                                                        NOF
                         1011
          007700
                                                        LD
                                                                   CIX). A
          DD23
                                                        106
          LIBIF 4
                         1013
                                                        IN
                                                                   A. (DICHSPT)
                                                                                         TOET DOCK BANK STATUS
6520
652F
6531
6534
6535
6537
          007700
                         1014
1015
                                                       LÐ
                                                                   (IX). A
          DD23
                                                        INC
          3A1563
                         1016
1017
                                                        ĹĐ
                                                                   A. (BS_MAX_BANK) FORT NUMBER OF BANKS
          A7
                                                        ANG
          290D
47
                         1018
                                                        JR
                                                                  Z. SS_EXIT
                                                       LD
                                                                                        ISET UP COUNTER
6538
          59
                                                                                        IBANK NUMBER INTO E
IDET BANK STATUS OF BANK OR
                                 SS_LOOF
                                                       LD
4539
         CD0564
                         1021
                                                        CALL
                                                                  OET_STATUS
```

```
6530
6536
6541
6542
6544
6546
            007100
                           1022
1023
                                                                   (IX). C
            0023
                                                         INC
                                                        LD
EUNZ
DEC
POP
POP
                                                                   B. E
SS_LOOP
            43
10F4
                           1024
                                                                                        IDO FOR ALL
                           1026
            DD2B
                                   SS_EXIT
                                                                   11
            DI
CI
FI
                                                                                        IRESTORE REGS
                           1028
                                                                   BC
   6548
                           1029
                           1030
                           1031
                           1032
                           1033
                                       RESTORE_BANK_STATUSES (STATUS_ADDR: 1X)
                           1035
                                                RESTORES BANK STATUS TO ALL BANKS
                           1036
                           1037
   654A
            F5
                           1038
                                   RESTORE_STATUS
                                                        PUSH
                                                                                        I SAVE REGS
  6548
6540
6540
6550
6552
            C5
                           1039
                                                        PUSH
PUSH
                                                                  BC
DE
                          1040
1041
            DD7E00
                                                        LD
                                                                  A. (1x)
(HREXPT). A
                                                                                        ICET EXT. ROM STATUS
                          1042
                                                       OUT
INC
LE
            DEFF
            0023
  6554
6557
            DEIZEOO
                           1044
                                                                  A. (IX)
                                                                                        FOET DOCK BANK STATUS
            D3F4
                          1045
1046
                                                                  (DICHSPT), A
   6559
            DI:23
                                                        1NC
  655B
            3A1563
                          1047
                                                       LD
                                                                  A. (BS_MAX_BANK) | DET NUMBER OF BANKS
  655E
655F
                                                       AND
JR
            260B
                           1049
                                                                  Z. RS_EXIT
  6561
            47
                                                                  P. A
C. (IX)
BANK_ENABLE
                          1050
                                                       LD
                                                                                       I SET UP COUNTER
  6562
6565
6566
6564
           DD4E00
CD4964
                          1051
                                  RS_LOOP
                                                       LD
CALL
                          1052
1053
                                                                                       IMPLITE MANY STATUS OF BANY ME
            DD23
                                                       INC
DUNZ
                          1054
1055
1056
1057
1055
           10F6
DD2B
                                                                  RS. J. DOP
                                                                                       100 FOR ALL
  656C
656E
656F
                                                       DEC
                                  RS_EXIT
           Di
                                                                  DE
                                                                                       IRESTORE REGS
           CI
FI
C9
  6570
                                                                  AF
  6571
                          1059
                                                       RET
                          1060
                          1061
1062
                                     GOTO_BANE (BANE), HORIZONTAL_SELECT, ADDA FASSED (IN STACE)
                          1063
                          1064
                          1045
                                               SETS OF THE DESTINATION BOOK AND JUMPS WITHOUT RETURN TO ADDRESS
                         1066
                                            IN BANI.
                          1068
 7572
6576
6579
6579
           PD210000
                          1069
                                 OUTO_BANK
                                                      LD
                                                                 1X. 0
                                                                                      ISET IX TO SP
           0000
                          1070
                                                      ALD
                                                                 IX. SP
           007100
                          1071
                                                                 (1x). C
                                                      LU
                                                                                      ISAVE BE AND TRACH RET ADDR
                          1072
1073
           E00(200)1
                                                      LD
                                                                 ([x+1). F
 657E
           DD4E02
                                                                 G (DX+2)
B (DX+3)
                                                                                      DOET PARMS FOR BANK ENABLE
                                                      1.0
          DD4403
CD9964
                         1074
1075
 4594
                                                      CALL
POP
POP
POP
                                                                 BANKLENABLE
 6587
6508
658A
          C1
DD(C)
                         1076
1077
                                                                BC
1X
                                                                                      FRESTORE BC
TRASH FARMS TO GOTO_BANK
          DOES
                         1079
                                                                                      FORT ADDR
                                JMFIX
                                                                 (IX)
                         1080
                         1031 1
                         1082 | CALLIBANK (ADDR. BANK, HORIZONTALISELECT, PRM_OUT, FRM_IN)
1083 | ALL INPUT PARAMETERS ARE PUSHED ON THE STACK
                         1084
                         1085
                                   CLOBBERS IX
                         1094
                         1087
                         1088
                                              SETS UP THE BANK AND MAKES A JUMP WITH RETURN ADDRESS TO ADDRESS
                         1084
                                           IN BANK.
                         1090
                         1091
ATRE
                        1092
                                BS_STACK
                                                      DEFS
                                                                64
2
450E
                                BS_SP
                                                     DEFS
                         1094
                        1095
6500
          F 3
                        1096
                                CALL_BANK
                                                     ΕX
                                                                (SP), HL
                                                                                     IGET RET ADDR
6501
          DD2ACE65
                                                     LD
DEC
                                                                IX. (BS_SP)
6505
6507
          DD2B
DD7400
                        1098
                                                                ΙX
                                                                (IX). H
650A
6500
                        1100
                                                     ŒC
                                                                ΙX
          DD750x1
                        1101
                                                     LD
                                                                iix), L
                                                                                     I PUSH HL ON BS_STACK
650F
65E0
          E1
                        1102
                                                     FOP
                                                                HL
(SP), HL
                        1103
                                                     EX
                                                                                     IGET PRM_IN
65E1
          DD28
                        1104
                                                     DEC
65E3
65E6
65E8
65E8
65EF
65EF
          DD7400
                        1105
                                                     LD
                                                                (ÎX), H
          DDIB
                        1106
1107
                                                     LEC
          DD7500
                                                                (IX). L
                                                                                     TPUSH PRM_IN ON BS_STACK TUPDATE BS_SP
          DD/22CE45
                                                     LD
PUSH
                        1108
                                                                (B$_$P). IX
         05
(5
F5
                        1109
                                                               Œ
                                                                                     SAVE REGS
                        1110
65F1
65F2
65F5
65F6
65F7
65F9
                        1111
                                                     PUSH
                        1112
         210000
                                                     LD
                                                     Ann
                                                               HL, SP
D, H
                                                                                     IHL - SP
                        1114
         5.4
                                                     LD
                                                     LD
                                                               E. L
A. (BS_MAX_BANK)
         3A1563
                        1116
                                                     LD
65FB
         4F
                        1117
                                                    LD
                                                               C. A
B. O
         0500
                        1113
65FE
         03
                        1119
                                                     INC
60FF
         03
A7
                        1120
1121
                                                     INC
                                                               BC
                                                                                    #BC = MAX_BANE + 2
                                                     AND
```

```
6601
          ED42
                                                             HL, BC
SP, HL
IX, O
IX, DE
                                                   SBC
  6603
                        1123
1124
                                                   LD
  6604
           DD210000
  6608
          0019
                        1125
                                                    ADD
  660A
                        1126
1127
                                                                                 IDE. HL NOW CONTAIN DEST. SEC
I POINTERS FOR A BLOCK MOVE
                                                   Εx
  660B
          DD4E08
                        1128
                                                   LD
                                                             C. (IX+FRM_OUT)
  660E
          DD4608
                        112°
1130
                                                             B. (IX+PRM_OUT)
                                                   LD
  6611
          BEGE
                                                   LD
                                                             A. 14
          81
4F
  6613
                        1131
                                                   ADD
                                                             A. C
  6614
                        1132
                                                   LD
                                                             C. A
  6615
          3001
                        1133
                                                   JR
                                                             NC. CB_NCI
                                                                                 IBC - PRM_OUT + 14
  6417
          04
                        1134
                                                   INC
          EDBO
                        1135
                               CB_NC1
                                                   LDIR
PUSH
                                                                                 THAKE ROOM FOR BANK STATUS
  661A
          0.5
                                                             DΕ
          DDE 1
  661B
                        1137
                                                   POP
                                                                                 IIX - DE
  661D
6620
          CD1E65
                        1138
                                                   CALL
                                                             SAVE_STATUS
          DB210000
                                                             IX. O
                                                   LD
 6624
6626
          DD39
                                                   ADD
          DD4E0A
                        1141
                                                   LD
                                                             C: (IX+HOR_SEL) :GCT PARMS FOR BANK_ENABLE
B: (IX+BANK)
 6629
6620
          DD4608
                        1142
                        1143
          CD9964
                                                   CALL
POP
                                                             BANK_ENABLE
                                                                                 TENABLE DESTINATION BANK
                                                             25
                                                                                 RESTORE REGS
 6630
          C1
                        1145
                                                   POP
                                                             BC
 6631
          DI
                        1146
                                                   POP
                                                             DE
 6632
6633
                                                            HL
IX
          DDE 1
                                                  POP
                        1143
                                                                                 TRASH PARMS TO CALL_BANK AND GET ADDR
 6635
                        1149
                                                             ΙX
                        1150
1151
                                                  POP
CALL
PUSH
 6637
          DOEL
                                                             1 X
 6639
          008065
                                                            JMPIX
AF
                                                                                 ICALL ADDRESS IN IX
          F5
C5
 A430
                        1152
                                                                                I SAVE REGS
 663D
                                                  PUSH
                        1153
                                                             BC
          05
65
                       1154
 SAGE
                                                            DE
 663F
                                                  PUSH
                                                            HL
IX: (BS_SP)
 6640
          DD2ACE65
 4444
          DD4E00
                        1157
                                                  LD
                                                            C. (IX)
 6647
6649
                       1158
1159
                                                  INC
                                                            IΧ
          DD4600
                                                  LD
                                                            B. (IX)
 664C
          0023
                        1160
                                                                                IPOP PRM_IN OFF BS_STACK
         DD22CE65
DD210000
                       1161
 664E
                                                  LD
                                                             (BS_SP), IX
                                                                                SUPPORTE BS_SP
 6652
6656
                       1162
                                                  L.D.
                                                            IX. O
         0039
                        1163
                                                  ADD
          DEGE
                       1164
                                                  LD
 665A
665B
         31
4F
                                                            A. C
                                                  ADD
                       1166
 6650
          3001
                                                  JR
                                                            NC. CB_NC2
                                                                                IRC = PRH_IN + 8
 665E
          04
                       1169
1169
                                                            IX BC
 665F
          P000
                             CB_NC2
                                                  ADD
                                                                                IIX = SP + PRM_IN + 9
 6661
         DOES
                       1170
                                                  PUSH
 6663
         E1
CB
                       1171
1172
                                                  POP
                                                                                THE = IX
THE = SEC FOINTER FOR BLOCK MOVE
 5564
                                                  DEC
 6665
         CD4A65
                                                  CALL
FURTH
                       1173
                                                            RESTORE_STATUS
                                                                                TRESTORE STATUS OF ALL BANKS
 AAAA
         DDE5
                       1174
                                                            Į ž
 566A
         Di
                                                  F1.6"
                                                                                FOR # DEST POINTER FOR BLOCK MORE
66.6F
         EDRE
                       1174
                                                  LUUK
                                                                                IDEALLUCATE SPACE FOR BANK STATUS
666P
8008
                                                            DE, HL
                                                  EX
INC
                                                            E. HL
SF. HL
IX. (ES_SF)
C. (IX)
IX
                       1178
666F
6670
6674
6677
                                                  LD
                                                                               TRESTORE SP
         DUZACE 65
                       1180
         DD4E00
                                                  LD
                       1182
1183
         DD23
                                                  INC
6679
6670
         DE146-00
                                                  LD
                                                            B. (1X)
         DD23
                       1164
                                                  INC
                                                                               IFOR RET ADDR OFF BS_STACE
667E
         DD22CE65
                       1185
                                                            (BS_SP). IX
                                                                               IUPDATE BS.SP
                                                  LĐ
6681
                       1164
                                                  PUSH
POF
                                                            EK.
6683
6685
         DOEL
                       1187
         E 1
                       1186
                                                  POF
                                                                               TRESTORE REGS
6686
         D1
                       1139
                                                            DE ···
                                                  POF
668.7
         CI
                       1190
6686
         F1
                       1191
                                                  POF
                                                            ΔF
6680
         DDES
                                                  PUSH.
                                                                               APUT RET ADDR ON STACK
6681
         C9
                       1193
                                                  RET
                       1194
                       1195
                       1196
                             I HERE ARE SOME EQUATES WHICH ARE USED BY XFER_BYTES AND THE ROUTINES IT
                       1197
                             I CALLS.
                      1198
                             DIRECTION
                                                  EQU
                             BLF_PTR
LENGTH
                                                 EGU
                      1200
                      1201
                             DEST_ADDR
                      1202
                                                  EQU
                      1203
                                                 EQU
                                                           689
                              DEST_BANK
                      1204
                                                  EQU
                      1205
                                                 EQU
                       1206
                      1207
                      1208
                              I MOVE_BYTES (BYTES_TO_MOVE) DE, DIRECTION : A)
                      1209
6680
        E5
                      1211
                             MOVE_BYTES:
                                                 F41: H
                                                                               ISAVE REGISTERS
        D5
C5
48
6630
                      1212
                                                 PUSH
                                                           DE
                                                           BC
C. B
B. (IX+SRC_BANE)
                      1213
1214
BARIE
                                                 PUSH
663F
6690
                                                 LD
        BD4609
                      1215
                                                 LU
6693
6696
        CD9964
                      1216
                                                 CALL
                                                           RANK_ENABLE I SELECT SRC BANK BANK I MOVE FROM SRC TO STACK
         42
                      1217
                                                 LĐ
                                                           C. E
E. (IX+BUF_PTR)
D. (IX+BUF_PTR+1)
L. (IX+SRC_ADDR)
                      1218
                                                 LD
64.98
        DOSEGO
                      1219
1220
        DD5601
                                                 LD
        DD6E06
MAGE
                      1221
        DD6607
                                                           H. (IX+SRC_ADDR+1)
```

```
66A4
                                                        RL(A
  6.6.A.5
           OF
                          1224
1225
                                                        RRCA
  60A6
            3805
                                                        . Fe
                                                                  C. MB_RV1
                                                                                       TIF A < 0
  SAAA
           FREO
                          1226
                                                        LDIR
  é-é-AA
                          1227
1228
1229
                                                        ADD
                                                                  HI. IC
                                                                                       *INCREMENT FOINTER
  66AF
           1805
                                                                  MB_UF1
  66AL
           EDES
                                  ME_RV1
                                                        LUGS
  6AAF
           A7
                          1230
                                                       AND
 66B0
66B2
           ED42
DD7506
                                                       SBC
                                                                  HL. BC : DECREMENT FOINTER (IX+SRC_ADDR). L : ISTORE NEW POINTER VALUE (IX+SRC_ADDR+1). H
                                                                                      I DECREMENT FOINTER
                          1232
                                  ME_UF1
                                                       LD
  66.B5
           DD7407
                                                       Ĺΰ
  66BS
                          1234
1235
1236
                                                       PUF
PUSH
PUSH
           CI
           E1
E5
C5
 66B9
                                                                  HL
BC
 66PE
                          1237
           DD4608
                                                                 B. (IX+DEST_BANE)
BANK_ENABLE ISELECT DEST BANE
B. H IMCVE FROM STACE TO DEST
C. L
                          1238
                                                       LEI
CALL
 66BF
6602
           CD9964
                          1239
                                                       LD
                          1240
  66C3
           4D
                          1241
 6604
           DD5E04
                          1242
1243
                                                       LĐ
                                                                  E. (IX+DEST_ADDR)
  66C7
                                                                 D. (IX+DEST_ADDR+1)
L. (IX+BUF_PTR)
                                                       LD
                          1244
1245
 AACA
           DIVAFOO
                                                       LD
 66CD
           DD6601
                                                       LD
                                                                  H. (IX+BUF_PTR+1)
 66D0
66D1
           07
0F
                          1246
1247
                                                       RLCA
                                                       RRCA
  6600
           3805
                                                       JR
                                                                 C. MB_RV2
                                                                                       11F A C 0
 6604
           EDRO
                          1249
1250
                                                       LDIR
          09
1805
                                                                  HL, RC
                                                       ADD
                                                                                       I INCREMENT POINTER
 6607
                          1251
                                                       JR
                                                                 MB_UP2
 66[19
           EDB8
                                 MB_RV2
                                                       LDDS
                          1252
 AADE
                          1253
 66DC
           EU42
                                                                 ML. BC | DECREMENT POINTER
(IX+DEST_ADDR), L | ISTORE NEW POINTER VALUE
(IX+DEST_ADDR+1), H
                                                       SHC
                          1254
 66DE
           DD7504
                                 MB_UP2
                                                       LD
          DD7405
                          1256
1257
 66E1
                                                       LU
 66E4
           C1
                                                       POP
                                                                                      IRESTORE REGISTERS
                         1258
1259
 AAES
          Ti 1
                                                       POP
 66E6
          Ē١
                                                       POP
                                                                 HL
 66E7
          C9
                          1260
                                                       RET
                         1261
1262
                         1263
                                    CREATE_BITMAF (ADDR: HL: BITMAF: A)
                         1264
                         1265
 66E8
                                 CREATE_PITMAF
                         1266
                                                                 D. H
                                                                                      I SAVE START ADDR
 66E9
66EA
          50
                         1267
                                                                 E. L
          004E02
                                                                 C: (IX+LENGTH)
B: (IX+LENGTH+1)
                         1266
                                                      LD
 66ED
66EO
          DD4603
                         1269
1270
                                                      LD
          DI/TEOO
                                                      LD
                                                                 A. (1x+DIRECTION)
 66F3
                                                      RLCA
                                                                                      ICALCULATE END ADDR
 66F 4
          OF
                         1272
1273
                                                      RRCA
 65F5
          3803
                                                      JK
                                                                 C. CB_SUB
                                                                                      HIF A C O
 AAF7
          00
                         1274
                                                      ADD
 6AF8
          1802
                         1275
                                                                 CRUCONT
                                                      JFC
                         1276
1277
                                                      SHC
 LAFA
          FUAD
                                CHUSUR
                                                                 HL, EC.
 6AFC
          CEI4EN.4
                                CELICONT
                                                                                     IGET END CHUNE BIT
 66FF
                         1278
                                                       CPL
6700
                         1279
                                                      LD
                                                                 B. A
6701
6702
          ЕĿ
                         1280
          CD4FM 4
                                                      CALL
                         1231
                                                                 GET_CHUNK
                                                                                     *GET START CHUNE BIT
4705
6706
          7F
4F
                                                      CPL
UD
                         1282
                                                                1 . A
                         1283
6707
          AS:
                         1284
                                                      XOR
6708
670A
         2816
79
                         1285
                                                                 Z. CB_EXIT
                                                      JR
                         1286
                                                      LD
                                                                 A. C
                                                                                     THERE IF START AND ENC CHUNESIA
670B
                         1287
          AO
                                                                                     FILL IN BTEWEEN THEM WITH ZEROES
                                                      AND
                                                                 H
          47
                         1.2966
                                                      LĐ
670D
670F
          OEQO
                         1289
                                                                 C. 0
                                                      LD
          7.7
                         1290
                                                      SCF
6710
6711
                                CB_NB1
                                                      LD
                                                                A. A
                                                                                     TEST NEXT BIT
                        1292
1293
         CB11
6713
6714
6716
         A1
                                                      ANE
         20FA
78
                        1294
1295
                                                      JR
LD
                                                                 NZ. CB_NB1
                                                                                     #OTHERWISE, FOUND FIRST ZERO
                               CBLNB2
                                                                A. B
                                                                                     TEST NEXT BIT
6717
6719
671A
                        1296
1297
1298
1299
         CBO 1
                                                      RL
         ΑI
                                                      AND
          2804
                                                                Z. CP_EXIT
                                                                                      FOUND LAST ZERO
671E
671E
671E
         A8
47
                                                      XOR
                                                                                      TOTHERWISE, UPDATE BITMAP
                        1300
                                                      LD
         13F6
                        1201
                                                      JR
                                                                CB_NB2
6720
         78
(9
                        1302
                                CBLEXIT
                                                      LD
                                                                A. B
                                                                                     IRETURN BITMAP
                         1303
                        1304
                        1 205
                                1 XFER_BYTES (DIRECTION, LENGTH, DEST_ADDR, SRC_ADDR, DEST_BANK, SRC_BANK) PASSED ON STACK IN ORDER SHOWN) STATUS_CODE: A)
                        1306
                        1 307
                        1303
                        1309
                                        ALL PARAMETERS ON STACK HAVE OFFSETS DEFINED ABOVE.
                        1310
                        1311
         F5
05
05
65
4722
4723
                        1312
                                XFER_BYTES
                                                                                     ISAVE REGS
                                                                BC
DE
                        1313
                                                     PUSH
6724
6725
6726
6729
                                                     PUSH
                        1315
1316
1317
1318
1319
                                                     PUSH
                                                                HL, O
         210000
                                                     LD
         39
                                                     ADD
                                                                HL, SP
DE, 10
672A
672D
         110A00
                                                     LD
                                                     ADD
         ĒĐ
                        1320
                                                                DE, HL
                                                     ΕX
                                                                                     THE POINTS TO START OF PARMS
672F
         3A1563
                        1321
                                                                   (BS_MAX_BANE)
```

```
6732
           4F
                         1322
                                                      LD
                                                                C. A
  6733
6735
6738
6739
           0500
                         1323
                                                      LD
                                                                B. 0
           210000
39
                         1324
                                                                HL, O
                                                      ADD
           Δ7
                          1326
  673A
           ED42
                         1327
                                                      SBC
  673C
673D
                         1328
           28
                                                      DEC
PUSH
                         1329
                                                                                     THL = SP - MAX_BANK - 2
  473E
                         1330
                                                                HL
  4.73F
           DDF 1
                         1331
                                                      POP
                                                                                     TIX POINTS TO LOCATION TO SAVE STATUS
  6741
6743
           UDFO
                                                      LD
                         1332
                                                                SF. IX
                                                     CALL
PUSH
           CD1E65
                         1333
                                                                 SAVE_STATUS
                                                                                     ISAVE BANKS' STATUS
  6746
                         1334
                                                                I€
  6747
6749
           DDET
                                                      POP
                         1335
                                                                1 X
                                                                                     LIX NUM POINTS TO CARMS
                                                                L. (1)+SRC_ADDR)
H. (1)+SRC_ADDR+1)
           PERSENA
                         1336
                                                      LĐ
  6.74E
           DDGGG
                         1337
                                                      LD
 674F
6752
6753
6756
          CDE866
                         1338
1339
1340
                                                                CREATE_BITMAP
                                                      CALL
                                                                                    FOET SRC BITMAP
                                                      PUSH
           DD6E04
                                                                L. (IX+DEST_ADDR)
                                                      LD
                         1341
1342
                                                     LD
          DDAAOS
                                                                H. (IX+DEST_ADDR+1)
 6759
6750
          CDE866
                                                                                   IGET DEST BITMAP
                                                                CREATE_BITMAP
                                                     LD
           4F
                         1343
                                                               C. A
 675D
                         1344
 675E
           47
                         1345
                                                     LD
                                                                                    IB - SRC BITHAP
 675F
          DD7E09
                         1346
1347
1348
                                                                A. (IX+SRC_BANK)
D. (IX+DEST_BANK)
                                                     LD
 6762
          DD5608
 6765
6766
                                                     CP
                                                                Ď
                                                                                    ICCHPARE SRC AND DEST BANK NUMBERS
          2005
                         1349
                                                      JR
                                                               NZ . XB_DIFF_BANKS
 6768
          78
                         1350
                                                     LD
                                                                A. B
                                                                                    THERE IF BANK NUMBERS ARE DIFFERENT
          AI
                                                     AND
 676A
          47
                         1352
                                                     LD
                                                                                    IB = UNION OR SRC AND DEST BITHAPS
          1808
 676B
                        1353
1354
                                                      . 10
                                                               XB_DO_MOVE
 47AD
          79
                                X8_DIFF_BANKS
                                                     I.D
                                                                                    ICHECK FOR OVERLAP BETWEEN SRC AND I DEST CHUNKS
                                                               A. B
                         1355
                                                     OR
                        1356
1357
 6.7AF
          FFFF
                                                               OFFH
                                                               NZ. XB_OVERLAP
 6771
          202D
                                                      R
 6773
6774
                                                     LD
                                                                                    THERE IF NO OVERLAP
          42
                        1359
6775
6778
          CD9964
                         1360
                                                     CALL
                                                               BANK_ENABLE
                                                                                    I SELECT DEST BANK
          DD4609
                        1361
                                XB_DO_HOVE
                                                     LD
                                                               B. (IX+SRC_BANK)
 677B
                        1362
          48
CD9944
                                                     I D
 477C
                        1363
                                                     CALL
                                                               BANK_ENABLE
                                                                                    I SELECT SRC BANK
 677F
          DD&EO&
                                                               L. (IX+SRC_ADDR)
H. (IX+SRC_ADDR+1)
                                                     LD
                        1365
1366
1367
          DD6607
 6732
                                                     LD
 6785
                                                     LD
                                                               E. (IX+DEST_ADDR)
D. (IX+DEST_ADDR+1)
 6788
          DD5605
678B
          DD4E02
                        1368
                                                     LD
                                                               C. (IX+LENGTH)
678E
                        1369
                                                     LD
                                                               B. (IX+LENGTH+1)
          DD7E00
                        1370
                                                     LD
                                                               A. (IX+DIRECTION)
5794
                        1371
                                                     RL CA
                        1372
6795
          OF
                                                     RRCA
          3304
                                                     JR
                                                               C. XB_REVERSE | I IF A < 0
6798
6798
          EDBO
                        1374
                                                     LDIR
          1852
                        1375
                                                               XB_EXIT
679C
                        1376
                               XB_REVERSE
                                                    LDUR
          134E
                        1 377
                                                               XB_EXIT
67A0
          210050
                        1379
                               XB_OVERLAP
                                                    LD
                                                               HL, MSTBOT
47A3
          C5
                        1379
                                                               BC
67A4
          OSFF
                                                               B. 255
GET_MORD
                        1380
                                                    LD
67A6
67A9
         C01663
                        1381
                                                    CALL
         C1
                                                    POP
                                                               BC
DE. STKSZ
57AA
          110002
                        1383
                                                    LD
67AD
                        1394
                                                    ANLI
67AE
         ED52
                                                               HL. DE
                                                                                   THE - ADDRESS OF STACK LIMIT
67B0
                        1386
1387
         112000
                                                               DE. FREE_BYTES
6783
6784
                                                    ADU
                                                               HL, DE
DE, HL
         ĖÞ
                        1339
                                                    £Χ
                                                                                   IDE . SP_NEW
67B5
         210000
                                                    LD
                                                               HL, U
HL, SP
67BS
                        1300
                                                    ALICI
                                                                                   THE # SPORED
6789
                                                    INC
                                                              ĐΕ
                                                                                   FOUMPARE SPLUID WITH SOURCE
                        1392
6.7BA
         A7
                                                    ANE
6788
6788
         E052
                                                    SEC
                                                               HL. DE
                        1394
          3004
                                                               NC - XB_SPACE
                                                                                   TIF SP_OLD - SP_NEW > 0
67HF
          3E01
                                                                                   IRETURN ERROR CODE
                                                    LD
6701
6703
          162E
                        1396
                                                    JF
                                                               XF_EXIT
          18
                              XELSPACE
                                                    DEC
6704
6705
                                                              IE. HL
                                                    EΧ
                                                              DE HL ISET SP TO SP_NEW
DE IDE = BUF_SZ
A, (IX+DIRECTION) : HL = BUF_PTR
(IX+RUF_PTR), L :SAVE DUF_PTR ON STACE
                        1300
                                                    LD
6706
6707
                        1400
                                                    INC
                        1401
1402
         DD7E00
670A
670D
         DD7500
                                                              (IX+RUF_PTR), L
(IX+BUF_PTR+1), H
                                                    l fi
         DDZAGI
                        1403
                                                    LD
6700
                                                             A INL = BYTES LEFT TO: MOVE
HL. DE + DE = BYTES TO MOVE THIS TIME
C. XB_LAST_MOVE + IF LESS THAN BUF_S2 BYTES LEFT
MOVE_BYTES
B_MOVE_LDOP
HL. DE
                                                              L. (1X+LENGTH)
         DD6E02
                        1404
                                                    LÞ
6703
6706
          DD6603
                                                    LD
                        1406
                              XE_MOVE_LOOP
                                                    AND
6707
6709
         ED52
                        1407
                                                    SPC
         3905
                        1408
670B
         CDSC66
                        1409
                                                    CALL
67LE
         18F 6
                       1410
67E0
                       1411
                              XELLAST_MOVE
                                                    ADD
                                                              HL, DE
DE, HL
MOVE_RYTES
         ÉH
                       1412
                                                    ΕX
67E2
67E5
         CD80.66
                       1413
                                                    CALL
                                                              DE, HL
L. (IX+BUF_PTR)
                       1414
                                                    ĒΧ
4.7E6
         DD6E00
                                                   LD
67E9
         10.6601
                       1416
                                                              H. (IX+BUF_PTR+1)
67EC
         19
                       1417
                                                              HL, DE
SP, HL
                                                   ADD
                                                                                  IML . BUF_PTR+BUF_SZ
IRESTORE STACH FOINTER
67ED
67EE
                                                   LD
         AF
                       1419
                              XE_EXIT
                                                   XOR
                                                                                   RETURN CODE FOR SUCCESSFUL COMPLETION
67EF
                       1420
1421
         DD210000
                                                   LD
         DD35
                                                    Δnr
6.7ES
         CD4A65
                                                              RESTORE STATUS TRESTORE STATE AND RETURN ZERO CODE
                                                   CALL
```

```
1423
1424
1425
1426
1427
   67FR
67FA
               DD23
DDF9
                                                                                     IX
SF. IX
                                                                       LU
POP
POP
POP
POP
EX
POP
EX
   67FC
67FU
               E1
III
                                                                                     HL
                                                                                                                IRESTORE REGS
   67FE
67FF
                                                                                     PC
AF
                                  1428
1429
1430
1431
               F 1
   6800
6802
               DDE
                                                                                     1 1
                                                                                                                ICLEAN UP PARMS
               DUE 3
                                                                                     (SF). IX
    6804
               DDE 1
                                                                                     1 X
               DDE 3
                                  1432
1433
   6506
                                                                                     (SP), 1X
   6608
                                                                       POP
EX
                                                                                     11
   680A
680C
               DOES
                                  1434
1435
1436
1437
1438
1439
1440
1441
1442
                                                                                     (SF), 1X
               DDE 1
                                                                       POP
                                                                                     1X
(SP), 1X
   680E
6810
               DDE3
                                                                       POF
               DDE3
   6812
                                                                                     (SP). 1X
                                                                       ΕX
   6814
                                                 GOTO_EXT_INIT (ADDRESS HL)
                                  1443
                                 1444
1445
   6815
               DUCT
                                            0010LE+1
                                                                       f'OF
                                                                                                                STRASH BLT ADDIT
                                                                                    17
                                 1446
1447
1448
1449
1450
1451
   6817
6818
681A
                                                                      PUSH
IN
SET
              FS
DBFF
                                                                                    AF
                                                                                    A. (HREXPT)
              CBFF
D3FF
   681C
                                                                      OUT
LD
                                                                                     (HREXPT). A
   661E
6620
              3E01
D3F4
                                                                                    A. 1
                                                                       OUT
                                                                                     (DKHSPT). A
  6622
6823
              F1
E9
                                 1452
                                                                      POF
JP
END
                                 1453
1454
                                                                                    (HL)
                                                    FIXTBL
             OBJ CODE M STAT SOURCE STATEMENT
   LOW
                                                                                                               ASM 5.9
                                         DISPATOR
                                                                    E 6011
                                                                                  6200H
                                                                                  62AEH
6316H
633BH
                                         INT
GET_WORD
                                                                    EGU
                                         PUTLWORD
GETLSTATUS
GETLNUMBER
                                                                    E00
E00
                                                                                  6405H
                                                                    EQU
EQU
                                                                                  6499H
                                         BANI LENABLE
SAVE_STATUS
                                     8
                                                                    EQU
EQU
                                                                                  651EH
654AH
                                         RESTURE_STATUS
                                         BS_STACK
BS_SP
GOTO_BANK
                                                                    EQU
                                                                                  658EH
650EH
                                   10
                                   1.2
                                                                    EQU
EQU
                                                                                  6572H
                                         CALL_BANK
MOVE_BYTES
CREATE_BITMAP
                                   13
                                                                                  6500H
                                  14
15
                                                                    EQU
                                                                                  668CH
                                                                                  66E8H
                                         XFER_BYTES
                                                                    EQU
                                                                                  6722H
                                             HERE IS THE FIXUP TABLE FOR THE VIDEO MODE CHANGER. IT DEFINES THE LOCATIONS IN RAM WHICH MUST BE UPDATED WHEN MOVED FROM CHUNE 3 TO CHUNE 7 OR V CE-VERSA. THE ADDRESSES IN THE TABLE ARE DEFINED AS CHUNE 3 ADDRESSES
                                   18
                                  19
                                  20
21
                                  22
23
24
25
26
27
1500
                                                                    ORG
                                                                                 1DOOH
1000
            3262
4062
                                         FIXTEL
                                                                    DEFW
                                                                                 DISPATCH+32H
1002
                                                                                 DISPATCH+4DH
DISPATCH+72H
                                                                    DEFW
11004
            7262
                                  28
                                                                    DEFW
1006
            AB62
                                 29
30
31
32
33
34
35
36
37
38
40
41
42
43
44
                                                                    DEFW
                                                                                 DISPATCH+OABH
1008
            BS62
                                                                    DEFW
                                                                                 INT+OAH
1DOA
1DOC
            CD62
D362
                                                                   DEFW
DEFW
                                                                                 INT+1FH
INT+25H
1DOE
            DC62
                                                                    DEFW
                                                                                 INT+2EH
1010
            FB62
                                                                    DEFW
                                                                                 INT+4DH
1012
            1863
                                                                   DEFM
                                                                                 GET_WORE+4H
1014
1016
            2063
2463
                                                                    DEFW
                                                                                 GET_WORD+OAH
                                                                    DEFW
                                                                                 GET_WORD+GEH
GET_WORD+14H
1018
101A
            2A63
3563
                                                                   DEFW
                                                                   DEFW
                                                                                 GET_WORD+1FH
11/10
            3E63
                                                                   LIEFW
                                                                                 PUT_WORD+3H
1101E
11020
            4463
                                                                   DEFW
                                                                                PUT_WORD+9H
                                                                                PUT_WORD+ODH
PUT_WORD+13H
PUT_WORD+1CH
            4863
                                  45
                                                                   DEFW
1022
1024
            4E63
                                 46
                                                                   DEFW
            5763
                                                                    DEFW
                                 4⊕
4⊕
1026
            1764
                                                                   DEFW
                                                                                GET_STATUS+12H
                                 50
51
52
53
1028
1024
            1E44
                                                                                GET_STATUS+19H
GET_STATUS+23H
                                                                   DEFW
            2864
                                                                   DEFW
11020
           6164
                                                                                GET_NUMBER+3H
GET_UUMBER+7H
                                                                   DEFW
102E
1030
           6564
6164
                                                                  DOFW
                                                                                OFT...NUMBERADER
```

```
1036
          B3/4
                                                      DEFM
                                                                 HANK ENABLE+1AH
          0E65
 1038
1D3A
                           61
                                                      DEFW
                                                                 BANK_ENABLE+7DH
                           62
63
64
65
10/30
          3265
                                                                 SAVE_STATUS+14H
SAVE_STATUS+1CH
                                                      DEFW
                           66
1040
          50.65
                                                      DEFW
                                                                 RESTORE_STATUS+12H
1042
          6665
                                                      DEFW
                                                                 RESTORE_STATUS+1CH
                           68
69
70
71
1[144
         CE65
                                                      DEFW
                                                                 GOTO_BANK+13H
1046
         8545
                                                      DEFW
                           72
73
1048
         D365
                                                      DEFW
                                                                 CALL_BANK+3H
1 D4A
          ED65
                           74
75
76
77
78
                                                      DEFW
                                                                 CALL_BANK+1DH
11140
         FOA5
                                                      DEFW
DEFW
                                                                 CALL_BANK+29H
CALL_BANK+4EH
104E
          1E66
                                                      DEFW
DEFW
                                                                 CALL_BANK+5DH
1050
          2066
1052
1054
          3A66
          4266
5066
                           79
                                                      DEFW
                                                                CALL_BANK+72H
CALL_BANK+80H
1056
                           80
                                                      DEFW
                                                                 CALL_BANK+96H
CALL_BANK+0A2H
1059
          6666
105A
          7266
                                                      DEFW
                           32
                           83
                           84
85
105E
                                                      DEFW
                                                                 MOVE_BYTES+8H
          9466
                           86
87
         0066
                                                      DEFW
                                                                 MOVE_BYTES+34H
1062
         FIM.A
                                                      TEFW
                                                                 CREATE_BITMAP+15H
                           88
                                                                 CREATE_BITHAP+1BH
         0367
                                                      DEFW
                           90
91
                                                      DEFW
                                                                 XFER_BYTES+0EH
         4F67
5067
                           92
1068
                                                      DEFW
                                                                 XFER_BYTES+2DH
                                                      DEFW
DEFW
DEFW
                                                                 XFER_BYTES+2EH
XFER_BYTES+38H
XFER_BYTES+54H
106A
1060
         5A67
                           94
                           95
1D6E
         7667
1070
1072
         7067
A767
                                                      DEFW
DEFW
                                                                 XFER_BYTES+5BH
XFER_BYTES+85H
                           99
1074
          DC67
                                                      DEFW
11:76
         E367
                                                      DEFW
                                                                 XFER_BYTES+001H
1078
                                                      DEFW
                                                                 XFER_BYTES+OD4H
                          100
                          101
1D7A
                                                      DEFW
                                                                           THIS IS THE TABLE TERMINATOR
```

APPENDIX B

System Variables Definition File

2068 HOME ROM

```
TS2000 HOME ROM
                               BASIC
      OBJ CODE MISTHT SOURCE STATEMENT
                                                                    ASM 5.9
LOC
                     13
                        *EJECT
                     14
                         *INCL
                                 SYSVAR
                        *PAGESIZE 54
                     15
                     16
                        RST:
                                 MACRO #ROUT
                     17
                     18
                                 RST #ROUT
                     19
                                 ENDM
                    20
                         ASSERT: MACRO #COND
                    21
                    22
                                 COND .NOT. (#COND)
                     23
                                 ERROR IN ASSERTION #COND
                    24
                                 ENDC
                     25
                                 ENDM
                    26
                         I SYSTEM VARIABLES
                     27
                     28
                     29
                                                  1 # CHARS PER LINE ON THE DISPLAY
                        L_LEN
                                 EQU 32
                        TV_LNS: EQU 24
                                                  I NO. OF LINES ON TV SCREEN
                     30
                                                  1 ADDRESS OF DISPLAY FILE
                     31
                         D_FILE: EQU 4000H
                         ATTRS: EQU D_FILE+L_LEN*TV_LNS*8
                                                                  # SCREEN ATTRIBUTES
                     32
                     33
                         PRBUFF: EQU ATTRS+TV_LNS*L_LEN : PRINTER BUFFER
                                 ASSERT PRBUFF.AND.OFFH=0
                    34
                                 COND .NOT. (PRBUFF. AND. OFFH=0)
                                 ERROR IN ASSERTION PRBUFF.AND.OFFH=0
                                 ENDC
```

```
KSTATE: EQU PRBUFF+L_LEN#8
                                     I SEE KB DOCUMENTATION
 34
      KS_AI EQU 0
                         •
                                   1ST BYTE IS A CHAR KEY PRESSED
      K$_C: EQU 1
 37
                                   2ND IS TIME TILL COUNTS AS RELEASED
                              1
 38
      KS_B: EQU 2
                                   3RD IS TIME (IN FRAMES) TILL REPEAT 4TH IS CODE WHEN REPEATS
 39
      KS_D: EQU 3
 40
                                   5TH - 8TH ARE A SECOND SET OF 1ST FOUR
 41
     LAST_K: EQU KSTATE+8
                              I NEWLY PRESSED KEY
     REPDEL: EQU LAST_K+1
 42
                              I DELAY BEFORE 1ST REPEAT (INITIALIZED TO 35)
 43
     REPPER: EQU REPDEL+1
                              1 DELAY BEFORE SUBSEQUENT REPEATS (INITIALIZED TO 5)
     DEFADD: EQU REPPER+1
 44
                                -> CHAR AFTER '(' IN FORMAL PARAMETER LIST; MUST BE
 45
                                   O WHEN NO USER-DEFINED FN BEING EVALUATED
     K_DATA: EQU DEFADD+2
 46
                              I DATA BYTE IN COMPOSITE CHAR FROM KEYBOARD
 47
     TVDATA: EQU K_DATA+1
                              I USED FOR STORING BYTES IN COMPOSITE CHARACTERS:
 48
                                   (TVDATA) - KEY BYTE.
 49
                                   (TVDATA+1) = 1ST DATA BYTE FOR AT OR TAB.
 50
     STRMS: EQU TVDATA+2
                              1 STREAM DATA: POINTERS (OFFSETS FROM (CHANS)-1) TO
 51
                                  CHANNELS. O = STREAM NOT OPEN.
                              3
 52
      HIDSTRIEQU 3
                              I NO. STREAMS HIDDEN FROM USER. THESE ARE TIED
 53
                                  .UNALTERABLY TO SPECIFIC CHANNELS.
                              t
 54
      HID_KI EQU -3
                             1. KEYBOARD
 55
      HID_S: EQU -2
                             ! TV, UPPER HALF OF SCREEN
 56
      HID_R: EQU -1
                             I INSERTION IN RAM
 57
      COM_STIEQU 0
                             1 STREAM FOR COMMANDS
 58
      INP_STIEQU 1
                             # STREAM FOR INPUT DATA
 59
      PR_ST: EQU 2
                             * STREAM FOR PRINT
 An
      LPR_ST: EQU 3
                             1 STREAM FOR LPRINT
 61
     CHARS: EQU STRMS+(HIDSTR+16)#2 ; -> 8#20H BYTES BEFORE CHARACTER SET
             EQU CHARS+2 : NO. CYCLES OF ERROR NOISE (2 8VES BELOW MIDDLE C)
 62
     FART:
     PIP:
 63
             EQU FART+1
                             ; NO. CYCLES OF KEYBOARD NOISE (3 8VES ABOVE MIDDLE C)
 64
     Y٤
             EQU PIP+1
                             I VALUE ALWAYS HELD IN IY
 65
     ERR_NR EQU Y
                             ; [RUN TIME ERROR #] - 1
 66
     FLAGS: EQU ERR_NR+1
                             : VARIOUS FLAGS
 67
      SPCI
             EQU 0
                                  SUPPRESS SPACE BEFORE TOKENS
      PR:
                                  PRINTING TO PRINTER, NOT TV
 88
             EQU 1
 69
      LMODE1: EQU 2
                                  L MODE, NOT K, AT CURRENT CHARACTER
      LMODE: EQU 3
                                 L MODE, NOT K, AT CURSOR
 70
                             .
 71
      KEYHIT: EQU 5
                                  KEYHIT FOUND
            EQU 6
 72
     NO:
                             .
                                  EXPRESSION IS NUMERICAL, NOT STRING
 73
      INTPT: EQU 7
                             •
                                  REQ INTERPRET RATHER THAN CHECK SYNTAX
     TVFLAG: EQU FLAGS+1
                             I FLAGS ASSOCIATED WITH THE TV
 74
 75
     LHS: EQU O
                                PRINTING TO LOWER HALF OF SCREEN
     EDIT: EQU 1
 76
                             .
                                  OUTPUTTING LINE FOR EDIT OR NO. FOR STRING
     ECHREQ: EQU 3
 77
                                  ECHO REQUESTED IF INPUTTING FROM KEYBOARD
                             .
                                  OUTPUTTING AN AUTOMATIC LISTING
 78
     LIST: EQU 4
                             •
                           1-> BOTTOM ITEM ON MACHINE STACK.
1-> RETURN ADDRESS FROM AUTOMATED
     CLHS: EQU 5
 79
                                  CLEAR LOWER HALF WHEN KEY PRESSED
    ERR_SP: EQU TVFLAG+1
 80
 81 LISTSP: EQU ERR_SP+2
                             : -> RETURN ADDRESS FROM AUTOMATIC LISTING
 82 MODE:
           EQU LISTSP+2
                             10 = K OR L. 1 = F. 2 = G.
    NEWPPC: EQU MODE+1
83
                             I LINE TO BE JUMPED TO
    NSPPC: EQU NEWPPC+2
84
                             ; SUBLINE TO BE JUMPED TO (BIT 7 OFF FORCES JUMP)
85
    PPC
             EQU NSPPC+1
                             I LINE # OF INSTR BEING INTERPRETED
    SUBPPC: EQU PPC+2
                             1 NO. WITHIN LINE OF INSTR BEING INTERPRETED
    BORDCR: EQU SUBPPC+1
87
                             # BORDER COLOUR (SHIFTED LEFT BACKG BITS WITH OS IN
88
                                  BITS 0-2 & 6-7)
89
    E_PPC
                             : LINE # OF "CURRENT" LINE IN LISTING
            EQU BORDCR+1
90
                             THE VARIABLES FROM (VARS) UP TO & INCLUDING (STKEND)
91
                                  ARE 'MOVABLE' IN THE SENSE THAT THEY ARE ADJUSTED
92
                                  (BY REMGSZ IN MODULE EDIT) WHENEVER STUFF IS
93
                                  INSERTED IN OR DELETED FROM RAM.
    VARS
            EQU E_PPC+2
                             : -> 1ST RECORD FOR A VARIABLE (LAST IS 1 BYTE 80H)
95
   DEST
            EQU VARS+2
                             # -> VAR MATCHED BY TEMPL CODE 1 OR 4 (TEXT OR RECORD)
    CHANS .. : EQU DEST+2
                             : -> CHANNEL DATA (INCLUDING FLOPPY BUFFERS).
97
                                  EACH ITEM COMPRISES:
                                  THE ADDRESS OF AN OUTPUT ROUTINE FOR WRCH.
98
99
                                  THE ADDRESS OF AN INPUT ROUTINE FOR INCH.
100
                                  A 1-BYTE CODE FOR THE DEVICE TYPE.
101
                                  &, WHERE APPROPRIATE, A FILE NAME, ADDITIONAL
                                 DATA & A BUFFER.
102
                             1
103 CURCHL: EQU CHANS_+2
                            : -> DATA FOR CURRENT CHANNEL
104 PROG: EQU CURCHL+2
                           + -> BASIC PROGRAM
105 NXTLIN: EQU_PROG+2
                             1 -> NEXT LINE OF SOURCE CODE
```

```
: -> TERMINATOR OF LAST DATA ITEM
  106 DATADD: EQU NXTLIN+2
  107 E_LINE EQU DATADD+2 1 -> LINE BEING EDITED
   108 K_CURI EQU E_LINE+2 1 -> CURRENT CHAR IN INPUT BUFFER
                                                         : -> CURRENT CHAR WHEN SYNTAX CHECKING ETC
  109 CH_ADD EQU K_CUR+2
                                                           : -> 1ST CHAR NOT SYNTACTICALLY OK (O IF ALL OK)
   110 X_PTR
                           EQU CH_ADD+2
                                                                   ALSO STORES (CH_ADD) DURING READ & INPUT
  111
                                                          E
                                                          1 -> TEMPORARY WORK SPACE
  112 WORKSP: EQU X_PTR+2
                                                         : -> BOTTOM OF CALCULATOR STACK
  113 STKBOT: EQU WORKSP+2
                                                          : -> NEXT FREE PLACE ON CALCULATOR STACK
   114 STKNXT: EQU STKBOT+2
                                                         I ALTERNATIVE NAME
  115 STKEND: EQU STKNXT
   116
                                                           : KEEPS VALUE OF CALCULATOR B REGISTER
  117 BREG:
                            EQU STKEND+2
  118 MEM:
                         EQU BREG+1 : -> AREA USED BY CALCTR INSTRS MEMORY & COPY
 PRINTER BUFFER NOT EMPTY

LSTR: EQU 2

INSIDE STRING WHEN DOING KB MODE IN LISTCH

CAPITALS SHIFT LOCK ON

RETYPE POSSIBLE AFTER SYNTAX ERROR

DELETE KEY REPEAT (KEY HELD DOWN)

DELETE KEY REPEAT (KEY HELD DOWN)

LOCAL TOP EQU DF_SZ+1

LINE # (IN PROGRAM) OF TOP LINE ON SCREEN

LOCAL TOP EQU S_TOP+2

LINE # (IN PROGRAM) OF TOP LINE ON SCREEN

LOCAL TOP EQU S_TOP+2

LINE # OF E.G. INTERRUPTED STMT

COLD SUB PPC) STATEMENT AND

LOCAL TOP EQU DF_C+1

LOCAL TOP EQU DF_C+2

LOCAL TOP EQU DF_C+1

LOCAL TOP EQU DF_C+2

LOCAL TOP EQU DF_C+1

LOCAL TOP 
                                                      1 MORE FLAGS
  119 FLAGS2: EQU MEM+2
            FLEX: EQU O
                                                                     FLEXIBLE LENGTH ASSIGNMENT REQUIRED
   131
            UNFND: EQU 1
   132
                                                                     DESTINATION OF ASSIGNMENT NOT FOUND
                                                         ;
            INPLN: EQU 5
                                                                    REQ INPUT VALUE RATHER THAN LINE OF PROGRAM
   133
                                                                     REQD TYPE IS NUMERIC
   134 ;NO: EQU 6
                                                                    LINPUT (INPUT LINE) RATHER THAN STRAIGHT INPUT
  135
           LINPLN:EQU 7
           STRLEN: EQU FLAGX+1 : LENGTH OF DESTINATION WHEN STRING TYPE
T_ADDR EQU STRLEN+2 : -> NEXT BYTE IN TEMPLATE
SEED EQU T_ADDR+2 : LAST RANDOM # BEFORE SCALING
FRAMES: EQU SEED+2 : LS 2 BYTES OF 3-BYTE FRAME COUNTER
  136 STRLEN: EQU FLAGX+1
  137
   138 SEED
   139 FRAMES: EQU SEED+2
  140 FRAME2: EQU FRAMES+2 : MS BYTE OF 3-BYTE FRAME COUNTER
141 UDG: EQU FRAME2+1 : -> 1ST USER DEFINED GRAPHIC
142 COORDS: EQU UDG+2 : COORDINATES OF LAST PLOT ETC.: (COORDS) = X-COORD...
141 UDG: EQU FRAME2+1
142 COORDS: EQU UDG+2
   143
                                                                     (COORDS+1) = Y-COORD.
   146 ECHO_E: EQU PR_CC+2
                                                         ; -> SCREEN CHAR UNDER PRINT CURSOR
   147 DF_CC ... EQU ECHO_E+2
   148 DFCCL: EQU DF_CC+2 : LIKE DF_CC FOR LOWER HALF
149 S_POSN EQU DFCCL+2 : SCREEN POSN (COL & LINE) OF NEXT CHAR TO BE OUTPUT
150 SPOSNL: EQU S_POSN+2 : LIKE S_POSN FOR LOWER HALF
   151 SCR_CT: EQU SPOSNL+2 : (SCROLL COUNT) DECREMENTED FOR EACH SCROLL
152 ATTR_P: EQU SCR_CT+1 : CURRENT PERMANENT PRINTING ATTRIBUTES
                                                                   LS BIT OF FOREGROUND COLOUR
   153
            FOREGE EQU O
                BLUE: EQU 0
                                                                           (INK)
   154
   155
                RED: EQU 1
                OREEN:
                                           EQU 2
   156
                                                                    LS BIT OF BACKGROUND COLOUR
   157
               BACKG: EQU 3
               BLUEB: EQU 3
                                                                             (PAPER)
   158
                                                           :
              REDB: __ EQU 4
   159
                GREENB: EQU 5
   160
   161
              HILITE: EQU 6
                                                                     BRIGHT
              FLASHI EQU 7
                                                                    FLASH
   162
                                                           .
                                                          1 CURRENT PERMANENT PRINTING ATTRIBUTES MASK:
   163 MASK_P: EQU ATTR_P+1
            O FOR NEW, 1 FOR OLD

CURRENT TEMP. PRINTING ATTRIBUTES (BITS AS ATTR_P)

HASK_T: EQU ATTR_T+1

P_FLAG: EQU MASK_T+1

I O FOR NEW, 1 FOR OLD

CURRENT TEMPO. PRINTING ATTRIBUTES MASK

ADDITIONAL FLAGS FOR PRINTING: TEMPORARY FLAGS IN
   164
   165
   166 MASK_T: EQU ATTR_T+1
   167
                                                                    EVEN BITS, PERMANENT FLAGS IN ODD BITS
   168
                                                                     NEW CHARS XOR'D INTO OLD RATHER THAN BEING LOADED
              XOR_CH: EQU 0
   169
                                                                    NEW CHARS INVERTED
   170
               INV_CH:EQU 2
                                                                     FOREGROUND := COMPLEMENT OF BACKGROUND
              F_CB: EQU 4
   171
                                                         BACKGROUND := COMPLEMENT OF FOREGROUS
BOTTOM OF CALCULATOR MEMORY (6 NUMBERS)
                                                                    BACKGROUND := COMPLEMENT OF FOREGROUND
              B_CF: EQU 6
   172
   173 MEMBOT: EQU P_FLAG+1
                                                        -> USER'S NMI SERVICE ROUTINE
LAST ADDRESS OF BASIC SYSTEM AREA
    174 NMIADD: EQU MEMBOT+30
   175 RAMTOP: EQU NMIADD+2 : LAST ADDRESS OF BASIC SYSTEM
176 P_RAMT: EQU RAMTOP+2 : -> LAST BYTE OF PHYSICAL RAM
```

```
177
178
                      **** ADDITIONAL
179
     ERR_LN: EQU P_RAMT+2
                              IPOINTER TO ON ERROR LINE NUMBER FOR A GO-TO.
     ERR_C: EQU ERR_LN+2
ERR_S: EQU ERR_C+2
180
                              ISTORE LINE NUMBER IN WHICH ERROR OCCURRED
181
                      .C+2 ISTORES STATEMENT NUMBER IN WHICH ERROR OCCURRED ERR_S+1 ISTORE FOR 'ERROR TYPE' AFTER A 'ON ERR'
     ERR_T: EQU
182
183
     SYSCON: EQU ERR_T+1
                              ISYSTEM CONFIGURATION TABLE.
184
     MAX_BANK! EQU SYSCON+2
                              ILARGEST BANK NUMBER ASSIGNED
     CURCBN: EQU MAX_BANK+1
185
                              I BANK NUMBER OF THE CURRENT CHANNEL
186
     MSTBOT: EQU CURCBN+1
                              IADDRESS OF LOCATION ABOVE MACHINE STACK
187
     VIDMOD: EQU MSTBOT+2
188
                              : NOTE: UNUSED BYTE AFTER VIDMOD
189
190
    ARSBUF: EQU VIDMOD+2
                              POINTER TO AROS BUFFER.
191
     ARSFLG: EQU ARSBUF+2
                              IAROS FLAG - BIT 7 SET INDICATES AROS PRESENT.
192
                              IBIT 4 SET INDICATES NXTLIN POINTING TO AROS.
                              IBIT 3 SET INDICATES DATADD POINTING TO AROS.
193
194
                              THESE BITS BECOME IMPORTANT FOR THE INSERT ROUTINE
                              I (POINTERS POINTING TO AROS SHOULD NOT BE UPDATED
195
196
                              FOR AN INSERTION INTO RAM).
197
     ADATLN: EQU ARSFLG+1
                              POINTER TO THE START OF THE CURRENT DATA LINE
198
                              (AROS ONLY)
199 DTLNLN: EQU ADATLN+2
                              *LENGTH OF THE CURRENT DATA LINE (AROS ONLY).
     STRMNM: EQU DTLNLN+2
200
                              CURRENT STREAM NUMBER, USED FOR BUS EXPANSION
201
                             ... UNIT DEVICES.
202 MSTACK: EQU
                      6200H
                              ILOCATION ABOVE MACHINE STACK
203 DRIVES: EQU
                      6840H
                              ISTART OF 'DRIVES' AREA
204
    BANK_ENABLE
                     EQU
                              6499H
205 CALL_BANK
                     EQU
                              6500H
206
    MOVE_SZ
                     EQU
                              DRIVES-6000H
207
    DEST7
                     EQU
                              OFFFFH-MOVE_SZ+1
208
    FIX
                     EQU
                              DEST7-6000H
209
     CALL_VBANK
                     EQU
                              CALL_BANK+FIX
210 GOTO_BANK
                     EQU
                                     *ADDRESS OF "GO TO BANK" BANK SWITCHING
                              6572H
211
                                      I AWARD.
     XFER_BYTES
212
                     FOIL
                              6722H
                                      INDIRECT DATA TRANSFER BETWEEN BANKS.
213 GOTO_EXT
                     EQU
                              6815H
                                      IFOR INITIALIZATION CODE IN HOME BANK
214
                                      . EXTENTION.
215
    SLVM
                     EQU
                              OIABH
                                      IADDRESS OF TAPE ROUTINES FOR SAVE, LOAD
216
                                      1. VERIFY AND MERGE COMMANDS.
217
     BLDSCT
                     EQU
                              09F4H
                                      ADDRESS OF INITIALIZATION ROUTINE TO
218
                                      # BUILD THE SYSTEM CONFIGURATION TABLE.
219 RESSCI
                                      IADDRESS OF RESET ROUTINE TO ADD DEVICES.
                     EQU
                              OC4CH
220 PASSING
                                      FADDRESS OF ROUTINE TO PUSH PARAMETERS TO
                     EQU
                              OFO9H
                                      J THE BEU ROUTINES ONTO THE MACHINE STACK.
221
222
                     ....
223
224
225
    : OTHER EQUATES
226
227
                     : RESTARTS
228
229
    ERROR:
            EQU 8
230
    WRCH
             EQU 16
   IGN_SP: EQU 24
231
232 NXT_IS: EQU 32
    CALCTRI EQU 40
233
    COPYUP: EQU 48
234
235
236
    NOSIZE EQU 5
                              # OF BYTES IN A FLOATING POINT NUMBER
            EQU '0'
237
    DIGIT
                              # DIGIT+N IS CODE FOR DIGIT N
    LETTER EQU 0
                              I LETTER+'ALPHA' IS CODE FOR LETTER ALPHA
238
                              NO. CONSECUTIVE TIMES KB SWITCH FOUND OPEN BEFORE
239
    DEBDEL: EQU 5
240
                                   KEY RECKONED RELEASED.
241
242
                     (CONTROL CHARACTERS (APPEARING ON STREAM)
243
244 COM_CC: EQU 6
                              # PRINT COMMA
245
    EDT_CC: EQU
                  7
                              I EDIT
246 BS_CC: EQU 8
                             # BACKSPACE (CURSOR LEFT)
    CRT_CC: EQU 9
247
                             : CURSOR RIGHT
248 CD_CC: EQU OAH
249 CU_CC: EQU OBH
                             1 CURSOR DOWN
                              # CURSOR UP
```

```
250 RUB_CC: EQU OCH
                              RUBOUT
 251
      CR_CC: EQU ODH
                              I CARRIAGE RETURN (NEWLINE)
 252
     NI s
              EQU CR_CC
 253
      SLUG:
              EQU OEH
                              F PRECEDES 5 BYTES OF SLUG
 254
     FORECC: EQU 10H
                              : FOREGROUND
 255
                              : THE CONTROL CHARS FOR FORE, BACK, FLASH, BRIGHT,
 256
                                   INVERT & OVER ARE CONSECUTIVE IN THAT ORDER.
 257
     AT_CC: EQU 16H
                              F PRINT AT
 258
     TAB_CC: EQU 17H
                              I PRINT TAB
 259
260
                      ; CONTROL CHARACTERS (RECEIVED FROM KEYBOARD)
261
262
     STY_KC: EQU O
                              1 STEADY
263
     FSH_KC: EQU
                              I FLASH
264
     LOL_KC: EQU
                              I LOWLIGHT
                  2
265
     HIL_KC: EQU 3
                              # HIGHLIGHT
     NLV_KC: EQU 4
INV_KC: EQU 5
266
                              * NORMAL VIDEO
267
                             INVERSE VIDEO
     CSL_KC: EQU 6
268
                              I CAPS SHIFT LOCK TOGGLE
269
     TM_KC: EQU OEH
                             # TOKEN MODE
270
     BRM_KC: EQU OFH
                             # GRAPHICS MODE
     FO_KC: EQU 10H
BG_KC: EQU 18H
271
                             FOREGROUND BLACK
272
                              # BACKGROUND BLACK
273
274
     SPACE:
            EQU / /
275
             EQU '"'
     QUOTE
                              * STRING QUOTE
276
     DOLLAR EQU '$'
                              # DOLLAR SIGN
277
     COLON: EQU /:/
279
             EQU 4,4
     COMMA
279
     KET
             EQU () (
226
227
                      : RESTARTS
228
     ERROR: EQU 8
229
230
     WRCH
             EQU 16
     IGN_SP: EQU 24
231
232
     NXT_IS: EQU 32
233
     CALCTR: EQU 40
     COPYUP: EQU 48
234
235
236
     NOSIZE EQU 5
                             # OF BYTES IN A FLOATING POINT NUMBER
237
     DIGIT
             EQU '0'
                             I DIGIT+N IS CODE FOR DIGIT N
     LETTER EQU O
238
                             I LETTER+'ALPHA' IS CODE FOR LETTER ALPHA
239
     DEBDEL: EQU 5
                             I NO. CONSECUTIVE TIMES KB SWITCH FOUND OPEN BEFORE
240
                                   KEY RECKONED RELEASED.
241
                     (CONTROL CHARACTERS (APPEARING ON STREAM)
242
243
244
     COM_CC: EQU 6
                             1 PRINT COMMA
245
     EDT_CC: EQU 7
                             * EDIT
246
     BS_CC: EQU 8
                             # BACKSPACE (CURSOR LEFT)
     CRT_CC: EQU 9
247
                             * CURSOR RIGHT
     CD_CC: EQU OAH
248
                             # CURSOR DOWN
     CU_CC: EQU OBH
249
                             I CURSOR UP
250
     RUB_CC: EQU OCH
                             # RUBOUT
251
     CR_CC: EQU ODH
                             # CARRIAGE RETURN (NEWLINE)
252
     NL:
             EQU CR_CC
253
     SLUG:
            EQU OEH
                             F PRECEDES 5 BYTES OF SLUG
254
     FORECC: EQU 10H
                             * FOREGROUND
255
                             ! THE CONTROL CHARS FOR FORE, BACK, FLASH, BRIGHT,
256
                             ı
                                  INVERT & OVER ARE CONSECUTIVE IN THAT ORDER.
257
     AT_CC: EQU 16H
                             I PRINT AT
258
     TAB_CC: EQU 17H
                             I PRINT TAB
259
260
                     : CONTROL CHARACTERS (RECEIVED FROM KEYBOARD)
261
262
    STY_KC: EQU
                  0
                             1 STEADY
263
    FSH_KC: EQU
                  1
                             1 FLASH
264
    LOL_KC: EQU 2
                             # LOWLIGHT
265
    HILTKC: EGN 3
                             # HIGHLIGHT
266
    NLV_KC: EQU
                 4
                             1 NORMAL VIDEO
    INV_KC: EQU
267
                 5
                             INVERSE VIDEO
```

```
268 CSL_KC: EQU 6
                              I CAPS SHIFT LOCK TOGGLE
 269 TM_KCI EQU OEH
                              1 TOKEN MODE
 270 GRM_KC+..EQU OFH
                              I ORAPHICS MODE
271 FG_KC: EQU 10H
272 BG_KC: EQU 18H
                              I FOREGROUND BLACK
                              * BACKGROUND BLACK
273
274 SPACE: EQU / /
             EQU '"'
275
     QUOTE
                              I STRING QUOTE
276 DOLLAR EQU '$'
                              1 DOLLAR SIGN
277 COLON: EQU /:/
278 COMMA
             EQU ','
 279
     KET
              EQU () (
280 BRA
              EQU '('
              EQU />/
281 GT:
282 MINUS
             EQU '-'
283 EQUAL
             EQU '='
284 PLUS:
             EQU '+'
285 STROKE: EQU 1/1
286 POWER: EQU '^'
287 POINT: EQU '.'
288 SHARP! EQU 5FH
                             I PRESTEL CODE FOR 'W'
289 STD_GR: EQU 80H
                             I 1ST STANDARD GRAPHIC
290 UD_GR: EQU 90H
                             I 1ST USER-DEFINED GRAPHIC
291
292
                      I TOKENS
293
294 TOKO: EQU OA5H
295 RNDTOK: EQU OA5H
                             I 1ST TOKEN
                             I 'RND'
                             I 'INKEYS'
296 INKEY: EQU OA6H
297 PI:
             EQU OA7H
                             I 'PI'
298 FN_TKI EQU OASH
                             I 'FN'
299 PNT_TK: EQU 0A9H
                             I 'POINT'
300 SCRNTK: EQU OAAH
                             I 'SCREENS'
                             I 'ATTRT'
301 ATTRTK: EQU OABH
302 AT:
             EQU OACH
                             I 'AT'
     TOK_FN: EQU FN_TK
                             I 1ST TOKEN TO REQUIRE A SPACE AFTER
303
304
                             1 'TAB'
     TAB: EQU OADH
305 VALSTK: EQU OAEH
306 LO_MON: EQU OAFH
                            I TOKEN FOR 1ST MONADIC OPTR AFTER VALS (CODE)
307 BIN_TK: EQU OC4H
                            ' 'BIN'
' 'OR' NB THE TOKENS FOR OR, AND, <=, >=, <> ARE
' CONSECUTIVE IN THAT ORDER.
308 OR_TK: EQU OC5H
309
                                 CONSECUTIVE IN THAT ORDER.
                            I 'LINE'
310 LINETK: EQU OCAH
                            I THEN
311 THEN: EQU OCBH
312 TO: EQU OCCH
             EQU OCCH
                             1 'TO'
313 STEP:
                             I 'STEP'
            EQU OCDH
314 DEF...TK: EQU OCEH
                            1 'DEF'
315 MIN_KWI EQU DEF_TK
                            1 1ST. TOKEN THAT IS A KEYWORD RATHER THAN _ OPERATOR
316 CAT_TK: EQU OCFH
317 FORMTK: EQU ODOH
                             I 'CAT'
                             I 'FORMAT'
318 MOVETK: EQU OD1H
                             I 'MOVE'
319 DEL_TKI EQU OD2H
                             I 'DELETE'
320 OPN_TK1 EQU OD3H
321 CLO_TK1 EQU OD4H
                             I 'OPEN'
                             # 'CLOSE'
322 MGE_TK: EQU OD5H
                             I 'MERGE'
                            1 'VERIFY'
323 VFY_TK: EQU OD6H
324 BEEPTK: EQU OD7H
                             I 'BEEP'
325 ARC_TK: EQU OD8H
                             1 'ARC'
326 FGTOK: EQU 0D9H
                             1 'FOREGROUND' NB THE TOKENS FOR FORE, BACK, FLASH,
327
                             BRIGHT. INVERT & OVER ARE CONSECUTIVE IN THAT
328
                             .
                                  ORDER.
329 INVTOK: EQU FGTOK+5
                             I 'INVERT'
330 OUT_TKI_EQU ODFH
                             1 COUT
331 LPR_TK: EQU OEOH
                             : 'LPRINT'
332 LL_TK: EQU OE1H
333 STOPTK: EQU OE2H
                             1 'LLIST
                             I 'STOP'
334 READTK: EQU OE3H
                             1 'READ'
                             : 'DATA'
335 DATATK: EQU 0E4H
336 RESTTK: EQU 0E5H
                             : 'RESTORE'
    NEXTOK EQU OF3H
                             I 'NEXT'
337
338 DUMPTK: EQU OFFH
                             1 'COPY'
339
340 BORDPT: EQU OFEH
                             1 OUTPUT PORT FOR SETTING BORDER COLOUR
```

```
343 KB_PT: EQU OFEH
                           I INPUT PORT FOR READING KEYBOARD
                           OUTPUT PORT FOR TAPE
I INPUT PORT FOR TAPE
TAPE INPUT BIT IN (I_PORT)
 344 O_PORT: EQU OFEH
     I_PORT: EQU OFEH
 345
 344
       TAPE_I:EQU 6
 347
                      ****ADDITIONAL
 348 DKHSPT: EQU OF4H ; DOCK HORIZONTAL SELECT PORT
349 BDATPT: EQU OFCH ; EXPANSION BANK DATA PORT
                            ; EXPANSION BANK DATA PORT
; EXPANSION BANK COMMAND PORT
 350 BCMDPT: EQU OFDH
351 HREXPT: EQU OFFH
                            HOME ROM EXPANSION BANK PORT
 352
                     ****
 353
 354
                     TOFFSETS FROM (CHANS) OF PERMANENT CHANNELS
 355
 356 CHAN_K: EQU O
                             * KEYBOARD
 357 CHAN_S: EQU 5
                             TV SCREEN (UPPER HALF)
 358 CHAN_R: EQU 10
                             # RAM INSERTION
 359
     CHAN_P: EQU 15
                             : IX PRINTER
 360
 361 CH_SET: EQU 4000H-96#8 ; ADDRESS OF CHARACTER SET (STARTING WITH SPACE)
 362 *EJECT
 363
 364
                     CALCULATOR COMMANDS. IN THE DESCRIPTIONS, T & S STAND FOR
 365
                     1 THE TOP & SECOND FROM TOP ON THE CALCULATOR STACK.
 366
                     # WHERE NECESSARY, FULLER DESCRIPTIONS CAN BE FOUND AT THE
 367
                     I CODE FOR THE RELEVANT ROUTINES.
368
369
                     THE FOLLOWING COMMANDS HAVE THE STACK POINTERS HL & DE (BUT
370
                     I NOT (STKNXT)) DECREMENTED FOR THEM BY CALCTR BEFORE THEY
371
                     F ARE CALLED (STKDWN).
372
     IFJUMP: EQU 0 IS.T -> SI RELATIVE JUMP CONDITIONAL ON VALUE OF T.
373
374 EXCHI
            EQU IFJUMP+1 (EXCHANGE) S.T -> T.S
375 LOSE:
             EQU EXCH+1
                             15,T -> S
376 SUB:
                            I (SUBTRACT) S.T -> S-T
             EQU LOSE+1
377
     TIMES: EQU SUB+1
             378 DIV:
                            I (DIVIDE) S.T -> S/T
379 POWER: EQU DIV+1
                             15.T -> S##T
380 OR:
                            IS.T -> S OR T (SEE OR).
             EQU POWER+1
381
             EQU OR+1
     AND
                            (ST -> NUMERICAL S AND T (SEE NOAND).
382
     GTI
             EQU AND+4
                            18.T -> NUMERICAL S>T
383
                             15 NUMERIC COMPARISON OPERATIONS HAVE NOT BEEN GIVEN
384
                             # MNEMONICS. S.T -> S^T WHERE ^ IS <=,>=, <>,>, < OR =
385
                             I SEE CMPRSN.
386 ADD:
             EQU AND+7
                            15.T -> S+T
387 STGAND: EQU ADD+1
                            ISS.T -> S$ AND$ T (SEE STGAND).
388
                            16 STRING COMPARISON OPERATIONS WITHOUT MNEMONICS.
389
     CONCAT: EQU STGAND+7
                             15$,T$ -> S$ +6 T$
390
391
                     FORDINARY OPERATIONS WITHOUT STKDWN.
392
393 VALS:
           EQU CONCAT+1
                            ITS -> VALS TS
394 USRS:
            EQU VALS+1
                            #T# -> ADDRESS OF BIT PATTERN FOR CORRESPONDING
395
                                 USER-DEFINED GRAPHIC
396
    INKEY: EQU USRS+1
                            IT -> INKEYS #T
397
    NEGATE: EQU INKEY+1
                            1T -> ..-T
            EQU NEGATE+1
398
    CODE
    LO_MON: EQU CODE
                            ITS -> CODE TS
399
                            IOPERATION CODE FOR LO_MON
400
            EQU CODE+1
                            ITS -> VAL TS
401 LEN:
            EQU VAL+1
                           ITS -> LEN TS
            EQU LEN+1
402
    SIN
                          IT -> SIN T
403 COS:
                           IT -> COS T
            EQU SIN+1
           EQU COS+1
404 TAN:
405
    ASN:
           EQU TAN+1
                           IT -> ARCSIN T
406
    ACS:
            EQU ASN+1
                           IT -> ARCCOS T
407
    ATNI
            EQU ACS+1
                           IT -> ARCTAN T
            EQU ATN+1
                           IT -> LN T
408 LN:
409
    EXP
            EQU LN+1
                           IT -> EXP. T
410
    INT:
            EQU EXP+1
                           (INTEGER PART) T -> INT T
411
    ROOT:
            EQU ROOT+1
            EQU INT+1
                           IT -> SQUARE ROOT OF T
IT -> SQN T
412
    SGN:
```

```
413 ABS:
             EQU SGN+1
                             (ABSOLUTE) T -> \T\
414 PEEKI
             EQU ABS+1
                              :T -> PEEK T
415 IN:
             EQU PEEK+1
                              :T -> IN T
             EQU IN+1
                              IT -> USR T
416 USR:
417
     STR:
             EQU USR+1
                              1T -> STR$ T
418 CHR:
             EQU STR+1
                              IT -> CHR# T
419 NOT:
             EQU CHR+1
                              T \rightarrow BOOLEAN (T = 0)
420 ZERO?! EQU NOT
421
    DUP:
             EQU NOT+1
                              *(DUPLICATE) T -> T,T
422
     INTDIVE EQU DUP+1
                              I (INTEGER DIVISION) S.T -> S MOD T. INT(S/T)
423 JUMP: EQU INTDIV+1
                              *PROGRAMME CONTROL - RELATIVE JUMP BY FOLLOWING BYTE
424 LITERAL: EQU JUMP+1
                              ISTACKS FOLLOWING NUMBER.
425 LOOP: EQU LITERAL+1
                              ILIKE ZILOG DJNZ
426 MINUS?: EQU LOOP+1
                              IT -> BOOLEAN (T < 0)
427 PLUS?: EQU MINUS?+1
                              IT -> BOOLEAN (T > 0)
                              IRETURNS CONTROL TO 280
428 QUIT:
             EQU PLUS?+1
429
     ANGLE: EQU QUIT+1
                              IT -> Y WHERE -1 <= Y <= +1 & SIN T = SIN (PI/2+Y)
430
                              # MEMORY O == TRUE IF T IN 2ND OR 3RD QUADRANT
431
    TRUNC: EQU ANGLE+1
                              :(TRUNCATE) T -> INTEGER TRUNCATION OF T TOWARDS O.
432 XEQTB: EQU TRUNC+1
                              *EXECUTES (BREG) AS A CALCULATOR INSTRUCTION
433 XEY:
             EQU XEQTB+1
                              15.T -> S # 10**T
     FLOAT: EQU XEY+1
434
                              IT FORCED INTO FLOATING POINT FORM
435
436
                      THE FOLLOWING COMMANDS HAVE ADDED TO THEM AN OPERAND, N.
437
438 CBSVI EQU 80H
439 CONSTI EQU CBSV+20H
                              ISUMS N TERMS OF CHEBYSHEV SERIES (SEE CBSV).
                              (CONSTANT) T -> T, NTH CALCULATOR CONSTANT
      MINUS1: EQU CONST+6
440
                              *CALCTR CONSTANT EQUAL TO -1
441
    COPY
             EQU CONST+20H
                              IT -> TI T COPIED TO NTH CALCULATOR MEMORY
442
     MEMORY: EQU COPY+20H
                              IT -> T, CONTENTS OF NTH CALCULATOR MEMORY
443
444
    OP_TK: EQU LO_MON-LO_MON
                                      I TOKEN FOR MONADIC OPTR C IS OP_TK+C
445 HI_MON: EQU OP_TK+CHR : TOKEN FOR LAST MONADIC OPTR EXCEPTING NOT
446
    MONOP: EQU LO_MON.OR.OCOH
                                     *OPERATION CODE FOR LO_MON, TOP 2 BITS SET.
   LONOMO: EQU OP_TK+SIN : TOKEN FOR 1ST (NUMBER) NUMBER OPTR AFTER -
HINOMO: EQU OP_TK+USR : TOKEN FOR LAST (NUMBER) NUMBER OPTR
447
448
449
450 #LIST ON
```

157

APPENDIX C

The entirety of Appendix C (pages 158 to 287) has been excluded primarily because of its length and because of the poor print quality. My OCR software would not accept it and including these pages as images would unacceptably expand the girth of this file.

Appendix C-1: Assembly source to support the 64 column mode

Appendix C-2: Assembly source to support 80 columns in the 64 column mode

Appendix C-3: Assembly source to support 40 columns in the 32 column mode

Appendix C-4: Assembly source to support the dual screen mode

Appendix C-5: Assembly source for sprite graphics in the 32 column mode

Much of this software is still bugged. Appendix C-5 was debugged and eventually released as "Sprites 2068" by a third party. Timex of Portugal also released "Basic 64" which supported 64, 80, 128 column text and BASIC graphics commands (CIRCLE, DRAW, etc.) in the 64 column mode, though written for the TC2048 and therefore must be run using a Spectrum emulator on the TS2068. A third party released OS64 on cartridge, an expansion to BASIC that allowed it to operate in the 64 column mode.

TS2068 PCB Assembly and Schematic Diagram

The following Appendix contains the PCB Assembly Drawing, the PCB Parts List, and PCB Schematic Diagram (a "fold-out" page located just inside the back cover). The Table below contains some corrections to the Schematic Diagram.

TS2068 PCB Schematic Diagram Corrections

Page 34 of the Technical Manual shows pin 9 of the joystick ports grounded as it should be. The traces were left off the TS2068 PCB.

VR1: U3-33 goes to VR1/Q5

Q4: Connect base to R55/R54

Solder dots on horizontal lines below keyboard:

U12-4 to U3-65 (\overline{WR})

U12-5 to U3-66 (MREO)

u5: U5-2 to U3-38 (A7R not A7RB)

Pl: Pl-4B +15V (not -15V)

u21:

T82068 PC BOARD COMPONENT LAYOUT

APPENDIX D
TS2068 PARTS LIST

DESCRI PTI ON	COMPONENT DESI GNATI ON	QTY PER ASSY	COMMENTS
(Fabrication and Artwork)			REV 3A
CAP. 0.1 uf, Ceramic, Axial	C2, 7, 9, 16, 24, 30 31, 34, 35, 37, 39, 43	23	-20 +80% or GMV
TEMP Z5U	44, 48, 49, 50, 51, 52 53, 54, 55, 56, 57		
CAP. 0.01 uf, Ceranic, Axial	C11, 12, 14, 33, 61 62, 68, 69	8	-20 +80% or GMV TEMP Z5U
CAP. 0.001 uf, Ceramic, Axial	C8, 45, 46, 47	4	-20 +80% or GMV TEMP Z5U
CAP. 0.047 uf, Ceramic, Axial	c10, 15, 74, 75	4	-20 +80% or GMV TEMP Z5U
CAP. 20pf Ceramic Axial	C23	1	- 20 +80% or GM/ TEMP Z5U
CAP. 39pf Ceramic Axial	c20	1	NPO
CAP. 43pf Ceramic Axial	C19	1	NPO
CAP. 56pf Ceramic Axial	C25	1	NPO
CAP. 75pf Ceramic Axial	C32	1	NPO
CAP. 120pf Ceramic Disc	C59, 63, 64, 65, 72 73	6	-20 +80% or GMV TEMP Z5U
CAP. 470uf, 25V AL Electro- lytic Axial	c3	1	
CAP. 1 uf, 16V MIN AL Electro- lytic Axial	c21	1	
CAP. 47 uf, 16V MIN AL Electrolytic Axial or Radial	c41	1	
CAP. 1000 uf, 12V MIN AL Electrolytic Axial	c40	1	LOW ESR
CAP. 1000 pf, 50V MIN FILM MYLAR	C36	1	+/- 20 %
CAP. 100 uf, 10V MIN AL Electrolytic Axial	C58, 67	2	ND0
CAP. 6-50 pf, TRIMMER	C5, 18	2	NPO
CAP. 0.47 uf Ceramic Axial	C60	1	-20 +80% or GMV TEMP Z5U
CAP. 33 uf TANTALUM	c71	1	+/- 20 %

	COMPONENT	QTY	
DESCRIPTION	DESIGNATION	PER ASSY	-20 +80% COMMENTS
. 68 pf Ceramic Axial	c/o	1	TEMP Z5U 20 80% or GMV
CAP. 24 pf Ceramic Axial	c29, 27	2	- 20 or GMV TEMP Z5U
CAP. 47 pf Ceramic Axial	C28	1	-20 +80 or GMV TEMP Z5U
RES. 300 OHM, 1/4W, +/-5%, CF	R23	1	ILIVE 200
RES. 200 OHM, 1/4W, +/-5%, CF	R19, 50, 54, 55	4	
RES. 100 OHM, 1/4W, +/-5%, CF	R58	1	
RES. 240 OHM, 1/4W, +/-5%, CF	R24, 28, 56, 57	4	
RES. 68 OHM, 1/4W, +/-5%, CF	R2	1	
RES. 680 OHM, 1/4W, +/-5%, CF	R13 68	2	
RES. 390 OHM, 1/4W, +/-5%, CF	R74'	1	
RES. 1K OHM, 1/4W, +/-5%, CF	R11, 33, 34, 35, 36 38, 42, 62	8	
RES. 1. 5K OHM, 1/4W, +/-5%, CF	R41	ו	
RES. 1. 8K OHM, 1/4W, +/-5%, CF	R29 , 30	2	
RES. 620 OHM, 1/4W, +/-5%, CF	R52	1	
RES. 2K OHM, 1/4W, +/-5%, CF	R22	1	
RES. 3K OHM, 1/4W, +/-5%, CF	R32	1	
RES. 2. 2K OHM, 1/4W, +/-5%, CF	R61	<u>]</u>	
RES. 110 OHM, 1/4W, +/-5%, CF	R53	1	
RES. 510 OHM, 1/4W, +/-5%, CF	R69	1	
RES. 5. 1K OHM, 1/4W, +/-5%, CF	R31	7	
RES. 10K OHM, 1/4W, +/-5%, CF	R1 6, 40, 60, 70	4	
RES. 13K OHM, 1/4W, +/-5%, CF RES. 20K OHM, 1/4W, +/-5%, CF	R26, 27	2 2	
RES. 20K OHM, 1/4W, +/-5%, CF RES 62K OHM, 1/4W, +/-5%, CF	R44, 45 R9, 73	2 2	
RES. 100K OHM, 1/4W, +/-5%, CF	R15, 49	2 2	
RES. 220K OHM, 1/4W, +/-5%, CF	R43	1	
RES. 75 OHM, 1/4W, +/-5%, CF	R46, 67	2	
RES. 1. 10K OHM 1/4W, +/-1%, MF	R6	ĩ	
RES. 3. 32K OHM 1/4W, +/-1%, MF	R 5	1	
RES. 10K OHM VARIABLE. LINEAR		3	
RES. 330 OHM, 0.5W, +/-5%,	CF R4	1	
RES. 56 OHM, 1/4W, +/-5%, CF	R65 , 71	2	
RES. 0.110 OHM , 3W, +/-5%,	Rl	1	
Wire Wound			
RES. 20 OHM, 1/4W, +/-5%, CF	R63	1	
RES. 82 OHM, 1/4W, +/-5%, CF	R64	1	
RES. 22 OHM, 1/4W, +/-5%, CF	R66	1	
RES. 680K OHM, 1/4W, +/-5%, CF	R14	1	
RES. 47K OHM, 1/4W, +/-5%, CF	R48	1	
RES. 390K OHM, 1/4W, +/-5%, CF	R72	1	
RES. 6. 8K OHM, 1/4W, +/-5%, CF	R12	1	

DESCRIPTION DIODE IN4148	COMPONENT DESIGNATION R4,5,6,7,8,9,10 11, 12, 13, 14, 15, 16 17, 18, 19, 20, 21, 22 23, 24, 25, 26, 27, 28	QTY PER ASSY 25	COMMENTS
DIODE, Schottky 1N5821 or equivalent	CR1		
IC, UA 78S40 NPC, Switching	Ul	1	
Regulator IC, SCLD	u3	1	
IC, LM 889N, Video Modulator	u4	1	
IC, 74LS244N	u5	1	
IC, TMS4416-15 (150NS) MDS Dynami c RAM	U6 , 7	2	
IC, UA 78L12 Regulator	U8		
IC, 74LS245	u9, 15	2	
IC, 74LS157N	U10, 11	2	
IC, TMS4416-20 (200NS) MDS Dynami c RAM	U12, 13, 17, 18	4	
IC,AY-3-8912, Sound Gen. and I/O Port	u14	1	
IC, 23128 Mask ROM (16K X 8)	U16	1	
IC, CPU Z80A	u19	1	
IC, 2364 Mask ROM (8K X 8)	u20	1	
IC, 74LS00	u21	1	
TRAN. PNP D43Cl TRAN. PNP 2N2907	Q1 Q3	1 1	
TRAN. PNP 2N3904 TRAN. PNP 2N2222	07, 8 Q5 4, 2	2 3	

$\boldsymbol{APPENDIX} \quad \boldsymbol{D}$

DESCRIPTION	COMPONENT DESIGNATION	QTY PER ASSY	COMMENTS
EMI Filter(Bifiler) 2.2mh	Ll	1	CONVENTS
Inductor 230 uh Inductor .33uh Axial Inductor .12uh	L2 L3, 4 L6, 7	1 2 2	
Crystal Oscillator 14.112 MHz	YI	1	
Crystal Oscillator 3.579545 MHz	Y2	1	
Switch SPDT, Rocker	SV2	1	
Switch Channel Select, SPDT Slide	SWL	1	
Video Jack Insulation Pad		1	Under J7
Jack, Right Angle RCA Video Jack	J7	1	Monitor
Jack, Mini Phone, EAR & MIC	J2, 3	2	Таре
Jack, COAX, DC Power, 2 1/2 MM Pin	Jl	1	
Jack, Phono	J8	1	Assembled to Shield, R.F.
Connector, Cartridge 2 X 18 Pin 0.1" Space	J4	1	Key between Contact 4&6
Connector, Flex Cable 14 Pin	J9	1	Keyboard
Connector, Joystick 9-Pin Male (D Type)	J5, 6	2	Joysticks
Shield, R.F. Button Shield, R.F. Top		1 1	
Heat Sink	HS1	1	
Heat Sink Insulation Pad			

DECCRIPMION	COMPONENT	QTY	COLATIVEC
DESCRIPTION	DESIGNATION	PER ASSY	COMMENTS
Socket, XC, 28 Pin		2	
Socket, IC, 40 Pin		1	
Speaker, 45 OHM, Mylar Cone		1	
Jumper Wire	W, 2, 50	3	
Ferrite Bead	L5, 8	2	
PC Board Assembly, Daughter		1	

APPENDIX E

Expansion Buss Comparison of TS2068, Sinclair Spectrum and ZX81

TS 2068	SPECTRUM	ZX-81
BOTTOM TOP	BOTTOM TOP	BOTTOM TOP
GND - GND SPKR/TAPE - EAR + 15 v - ATR + 5 v - DT N.C N.C. PWR GND - DT CLK - DT A 10 DT A 11 DT A 12 DT A 13 DT A 14 B - INT A 15 DT A 16 HALT A 18 DT A 19 RDB A 10 RDB A 20 WRB A 21 BUSAK A 7 22 WAIT A 23 BUSAK A 7 22 WAIT A 24 RESET A 4 25 MI N. C. 26 RFSHB RGB Red 27 EXROM RGB Grn 28 ROSCS RGB BIU 29 BE 30 IO A 5 VIDEO 31 SOUND	A ₁₄	5v 1 D ₇ 9v 2 RAMCS 0v 4 D ₀ 0v 5 D ₁ CLK 5 D ₂ A ₀ 7 D ₆ A ₁ 0 D ₆ A ₂ 10 D ₄ A ₁₆ 12 NMi A ₁₈ 13 HALT
GND 32 GND	295	

August 1985 Bob Orrfelt

TS2068 MODIFICATIONS FOR EPROMS

There are a number of errors in the TS2068 Home ROM and the Extension ROM. The errors can be corrected by using EPROMs. The following modifications are necessary:

Non-comnonent side of the pcb.

- 0. Remove ROMs.
- 1. Cut the trace between U20-26 and U20-27
- 2. Jumper pins 1 to 28 to 27 on each socket.

Component side of pcb.

- 3. Remove the two zero ohm resistors Wl and W2.
- 4. Cut the trace just above and to the left of hole A.
- 5. Add a jumper from hole A to the trace. This connects MREQ to U16 pin 22.
- 6. Add a jumper from hole C to hole B. This connects ROMCS to U16 pin 20.
- 7. Use a 27128 (16K) EPROM for U16.
- 8. Use a 2764 (8K) EPROM for U20.

October 1985 Bob Orrfelt

Proposed TS2068 Home ROM Corrections and Improvements

```
NMI fix.
005D 2801
                        JR
                                Z,0070H
DELETE delay timing.
0351 010100 LD BC,0001H
                                                          USR chunk selection.
389F E660 AND 6
38A1 2818 JR Z
38A3 D640 SUB A
38A5 FAB738 JP M
0354 08
0355 79
                        DEC
                                BC.
                                                                                  AND 50H
                                ₽,c
                        ĹĎ
                                                                                          Z,38BEH
A,40H
M,38B7H
0356 80
                        OR.
                                8
0357
                                NZ,0354H
       20FB
                        ĴΒ
0359 F1
                        POP
                                AĒ
035A 18D2
                        JR
                                032EH
                                                          Fix for Oliger EPROM programer.
(see May 85 Syncware, page 14)
002B 84 DB 84H
002C 87 DB 87H
Optional turn an message.
(Last. character add 80H)
1118 Property of Bob
1128 Orrfelt .....
                                                          002D 8B
002E 8D
002F 92
                                                                                           авн
                                                                                  DB
1138 ......
1138 ..
                                                                                  DB
                                                                                           8DH
                                                                                  DB
                                                                                           92H
INT -65536 etc. errors.
33F1 F5 PUSH AF
33F2 3C INC A
                                                                   for EPROM programmer.
D9 EXX
212800 LD ,0028H
33F3 B3
33F4 B2
                                Ε
                        OR
                                                                                           0028H
                                                           3789
                        OR
                                D
                                                           378C 85
378D 6F
378E 6E
378F 2636
                       JΡ
                                                                                  ADD
33F5 C2E435
                                NZ, 35E4H
                                                                                           L(A
(HL)
                                                                                  LD
33F8 C3EF35
                       JP
                                35EFH
                                                                                  LD
                                                                                           36H
                        JR
35E2
        181A
                                35FEH
                       PÔP
LD
35E4. F1
                                ΑF
                                                           370109
3702AF
370309
3704
                                (HL),A
35E5
        77
                                                                                  XORA
35E6
        23
                        INC
35E7
        73
                        LD
                                (HL);.
                                                                                  NOP
        23
72
                        INC
35E8
                                HL
35E9
                        LD
                                (HL), D
35EA
                        DEC
        2B
                                HL
35EB
        2B
                        DEC
                                HL
35EC
        2B
                        DEC
                                HL
35ED D1
                        POP
                                DE
35EE C9
                        RET
35EF
                       POP
                                AF
35F0
       2B
                       DEC
        3691
35F1
                        LD
                                (HL), 91H
35F3 23
35F4 3680
35F6 3C
35F7 18ED
                        INC
                                (HL), 80H
                        LD
                        INC
                                35E6H
                        JR
35F9
35FD
                          blanks
```

